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Abstract—Direct time-of-flight (dToF) sensors that measure
depth by pulsing a laser and timing the photon return are
used in many applications, including consumer electronics for
proximity sensing and depth map generation. A histogram of
photon return times is measured and then processed to estimate
object depth. By collecting many photons that span multiple
bins of the histogram the final depth estimate interpolates
between time-to-digital converter bins to produce a result that
is more precise than the converter resolution. The precision
of this interpolation depends upon the temporal spread of the
measurement, the resolution of the time-to-digital converter,
and the number of signal and background photons measured.
There is a need for dToF depth precision models to guide
design and predict and tune performance during use. Here,
we present models that estimate sensor depth precision versus
dToF design parameters and photons measured. We use Monte
Carlo simulations and experimental measurements to prove
the accuracy of the models. With proven models in hand, we
investigate dToF sensor design by first presenting the dependence
of precision upon the TDC resolution and the signal-to-noise
ratio. Second, we experimentally measure the depth precision
versus the intensity of background illumination. The models
closely match the measurements of background susceptibility and
locate a transition point of background intensity below which
precision is constant and above which the precision continuously
degrades. Finally, experimental measurements demonstrate how
the modeling enables dynamic tuning: from a single histogram we
estimate precision, thus enabling sensor exposure time tuning for
a target precision or prediction of the precision given a change in
object distance or background illumination. This work presents
straightforward models verified by simulation and measurement.
These models guide dToF design and enable dynamic adjustments
that benefit power-constrained usage scenarios.

Index Terms—ToF, Time-of-Flight, Distance measurement,
Single-photon avalanche diode (SPAD), direct time-of-flight
(dTOF), Histograms, light detection and ranging (LiDAR), Robot
sensing systems

I. INTRODUCTION

Optical time-of-flight (ToF) systems consist of a transmit-
ter and a receiver that directly or indirectly time photons
to determine the distance to objects. A direct ToF (dToF)
sensor probes the scene with a brief laser pulse and measures
the time for the reflected photons to return. This approach
produces a histogram of photon return times from which the
depth and reflectivity of objects in the scene are extracted.
Direct ToF examples include a 4,096-pixel sensor that was
demonstrated as an altimeter for spacecraft landing [1] and
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the miniaturized ST VL53L1X, a 16 × 16 array with a 4 m
range and 1.5 mm precision for mobile phone applications
[2]. Direct ToF technology continues to improve suggesting
further capability growth. Recent developments include a 3D
stacked single-photon avalanche photodiode (SPAD) chip [3],
a 256×256 SPAD array chip connected by 3D Cu-Cu stacking
to a processing chip [4] and a 1-Mega-pixel time-gated SPAD
array (1200×900 SPAD array with 9.4µm pixel pitch) [5].

A single-photon dToF sensor signal chain consists of a
pulsed laser diode, an SPAD receiver array, one or more time-
to-digital converters (TDCs) that digitize the photon flight
time, and memory to build a histogram of the flight times.
The pulsed laser, SPAD, and TDC each have an inherent
timing jitter, which, when combined with other sources of
timing spread that include the distribution of photon travel
lengths and weather effects such as fog [6], produce a total
temporal spread. Recent work has demonstrated a laser diode
driver capable of 64 ps RMS [7]. SPAD miniaturization and
integration has progressed with [8] demonstrating an SPAD in
45 nm CMOS image sensor technology with 46 ps RMS timing
jitter and no apparent exponential tail due to charge carrier
diffusion, such that the timing response is well-modeled by a
single Gaussian distribution. Similarly, an SPAD array fabri-
cated in 180 nm CMOS with a 4µm pixel pitch and timing
jitter of 88 ps RMS has no apparent exponential tail [9]. A
TDC with a resolution of 100 ps and timing jitter of 44 ps RMS
was demonstrated previously and is representative of current
TDC capabilities [10]. The timing jitter and quantization noise
of these three elements may be added in quadrature for a
composite RMS uncertainty of ∼120 ps RMS, equivalent to
a distance precision of 18 mm. Yet, considerably more precise
measurements are available from both commercial (1.5 mm
RMS [2]) and academic devices (1.4 mm RMS [11]). To
achieve a depth measurement more precise than the TDC
resolution or system temporal spread the TDC histogram is
processed using super-resolution localization methods. Here
we ask: what analytical models best predict the dependence of
the depth precision on instrument timing jitter, TDC resolution,
and the number of signal and background photons collected?

Localization of a peak in a histogram or a spot in an
image in the presence of noise (Poisson photon and Gaussian
instrument) and resolution limits has been studied in several
contexts. These contexts include spacecraft star tracking [12],
spot localization in fluorescence microscopy (see [13] and
reference therein), and processing of LiDAR histograms of
photon return times [14]–[16]. Our work draws upon localiza-
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tion methods from both imaging and LiDAR with analogies
between images and timing histograms of: 1) position⇔ time;
2) point spread function (PSF)⇔ instrument response function
(IRF); 3) pixel size ⇔ histogram bin width. As established
by [17] for images, the fundamental precision limit without
noise nor pixelization is σPSF√

NIMG
where σPSF is the standard

deviation of a Gaussian PSF and NIMG is the number of
signal photons measured in the image. The work of Winick
[18] establishes the Cramér-Rao bound of the precision of
spot localization given a Gaussian PSF, pixelization, and pixel
background noise. This previous scenario is analogous to depth
estimation from a dToF histogram with the TDC resolution
mapping to the image sensor pixelization.

Localization precision has been extensively studied in the
field of single-molecule fluorescence microscopy. Similar to
dToF depth estimation, spot localization in microscopy es-
timates the position of a fluorophore in an image captured
by an array of pixels that is corrupted by photon shot noise,
background photons, pixelization, and image sensor read-noise
in 2D [19] or even in 3D dimensions [20]. Spot localization to
sub-pixel precision (hence the term super-resolution) has been
demonstrated using least-squares (LS) fits [19], maximum-
likelihood estimation (MLE) [21], or nonfitting methods such
as iterative centroiding of the intensity [22]. MLE approaches
the theoretical limit of precision as set by the Cramér-Rao
lower bound (CRB) when a model of the microscope PSF
and noise is available [13]. This theoretical precision limit has
been derived in the presence of photon shot-noise, background
photons, and detector pixelization while considering an Airy
disk PSF [23].

Return time processing methods for a dToF system may be
separated into distinct steps of peak detection and character-
ization [15]. A dToF system may measure multiple distinct
object distances in the scene with more than one and possibly
overlapping histogram peaks. In this scenario pre-processing
steps such as Richardson-Lucy deconvolution may first be
used to minimize the timing spread due to the instrument and
recover the resolution of the object [16]. Multiple peaks may
be detected using methods such as bump hunting on smoothed
derivatives of the photon count data [15] or the reversible jump
Markov chain Monte Carlo (RJMCMC) [24]. Once peaks are
detected, MLE using a Poisson distribution can be used for
the best estimate of the actual return time [15]. These works
present optimal processing approaches given specific hardware
and/or data as well as innovative approaches to extract multiple
peaks in a single histogram. Our goal differs in that we seek
to provide models for the localization precision of a single
return-time peak. Further, as discussed by Chen et al. [25],
LiDAR systems include a number of configurable parameters
for which users and designers need guidance. Our models help
fulfill this need by guiding the tuning of parameters for optimal
performance.

In this work, we present models for the precision of single-
photon dToF sensors that link hardware design parameters
and the number of signal and background photons collected
to the depth precision, thus guiding design and configuration
optimization. Our studies present three analytical models of
progressively increasing rigor and verify the applicability of

the models using Monte Carlo simulations and experimental
measurements. Questions pursued include: 1) How many sig-
nal photons are needed for a particular precision? 2) How does
precision depend upon the background photon rate? 3) What
is the optimal TDC resolution given the temporal spread of
the IRF? These models predict the precision from a single
histogram and thus support the deployment of adaptive dToF
usage including energy-aware algorithms that adjust to the en-
vironmental scenario in real-time to enable longer battery life
in hand-held applications. Our contribution uniquely presents
a straightforward model for timing precision that guides dToF
design and configuration.

II. METHODS

A. Analytical modeling

A dToF sensor measures an unknown photon return time, t0,
in the presence of timing jitter from the laser, SPAD, and TDC.
Previous SPAD technologies demonstrated a time response
with an exponential diffusion tail following an initial Gaussian
response. However, miniaturization and device engineering
have eliminated this charge diffusion-based slow exponential
tail and justify an assumption of a Gaussian distribution of
response times [8], [9], [26]. The temporal spread may be
further broadened by details of photon propagation such as
measurement of a range of photon path lengths due to object
size and the field-of-view of the sensor [27], [28] and atmo-
spheric effects (including fog [6]). We model the combined
effects from the sensor and optical propagation as a Gaussian
spread of return times with a standard deviation σ. The timing
spread of σ may be estimated from a fit to the histogram of
return times and used in subsequent modeling as shown in our
experimental validation. The models consider the number of
signal photons collected to be Poisson distributed with mean
value N . This parameter depends upon object reflectivity and
depth (d), laser intensity, and sensor exposure time. The timing
digitization resolution of the TDC is represented as a. The
Poisson distributed background counts per TDC bin is denoted
as b. This parameter depends upon the ambient illumination
in the environment, the sensor optical and detector design,
and the SPAD dark count rate. For a given measurement
scenario, with a background photon rate set by the ambient
illumination intensity and ToF receiver parameters, b scales
with TDC resolution. This scaling makes our analysis distinct
from other analyses of microscopy localization where pixel
noise may be dominated by electronics noise (i.e. read-noise)
and does not scale with pixel size. We note that modeling
of optical propagation in a LiDAR system is beyond the
scope of this work (for examples see [27], [28]); in this work
we experimentally extract these parameters from the sensor
histogram to estimate depth precision.

With these parameters in place an expression for the proba-
bility distribution function (PDF) of the continuous-time signal
is given as:

f(t, t0) =
1

σ
√
2π
e−(t−t0)

2/2σ2

. (1)
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The signal and background accumulated into a TDC bin that
spans a time interval of t1 to t2 with a = t2− t1 is then given
as:

Q(t1, t2) =

∫ t2

t1

N

σ
√
2π
e−(t−t0)

2/2σ2

dt+ b. (2)

Often instruments have a limit of one photon arrival time
digitized per laser pulse, such that the histogram signal is built
from many laser pulses.

The dToF localization performance is analytically modeled
using three methods. For the case of a Gaussian distributed
instrument response function a centroid calculation has been
shown to be an unbiased MLE with a one standard deviation
uncertainty of:

δ = σ/
√
N (3)

when TDC resolution and background noise are ignored [29].
This model is referred to as the fundamental limit. A second
localization method presented by Thompson et al. minimizes
the least-squares error of a centroid calculation to data that
has had a Gaussian mask applied [19]. This method localizes a
discretely sampled one-dimensional Gaussian distribution with
a precision of:

δ =

√
σ2 + a2/12

N
+

4
√
πσ3b

aN2
. (4)

The third analytical model evaluates the Cramér-Rao bound
(CRB) which is the lowest possible variance of an unbiased
estimator of an unknown value [30]. The CRB for 1D local-
ization given the PDF of (1) in the presence of quantization,
and background noise [18] is:

~E[(t0( ~Q)− t0)2] =
1∑

i
[Nf ′

i(t0)]
2

Nfi(t0)+b

(5)

where i is the ith TDC bin, f ′i is the derivative with respect
to time of the PDF from (1), ~Q represents the measured count
values in each TDC bin, and ~E represents the expected value.
The actual return time may fall anywhere within the TDC bins
and, as such, the estimated variance must be averaged over a
full TDC bin of width a to produce a precision estimate of:

δ =

[
1

a

∫ a/2

−a/2
~E[(t0( ~Q)− t0)2]dt0

]1/2
(6)

This analytical method is referred to as the Cramér-Rao bound
(or CRB). We have implemented the CRB calculation in
Python and verified concordance with the results in [18].

B. Monte Carlo simulations

We verified the analytical models using Monte Carlo sim-
ulations. The Monte Carlo simulation develops an array of
Poisson distributed background photon arrival times given a
specified average rate that corresponds to b photons per bin.
The number of signal photons is determined by drawing from
a Poisson distribution with a mean value of N . The arrival
time of each signal photon is determined by sampling from
a Gaussian distribution with an average arrival time t0 and
a standard deviation set by the temporal spread (σ). With
the continuous-time data available, the photon arrival times

are then quantized into bins to emulate the digitization of a
TDC. Throughout the simulations, the average arrival time is
randomly varied by the width of a histogram bin to remove
systematic quantization effects. Fifty histograms are generated
for each set of configurations. Note that photon pileup caused
by an instrument limit on the number of detected photons per
laser pulse, typically one photon per pulse, is not considered
in these simulations. Fig. 1 demonstrates a zoom-in around
the signal peak of a Monte Carlo simulation result for the
scenario of b = 30.0, a TDC resolution a = 150 ps, and a
total of N = 300 signal photons.

Fig. 1. An example histogram created using Monte Carlo simulations with
176 TDC bins, a background level of b = 30.0, total signal photons of
N = 300, a temporal spread of σ = 150 ps, and a mean signal arrival time
of 12 ns. A Gaussian fit to the histogram data is overlaid in magenta. The plot
is zoomed onto a subset of the TDC bins centered around the arrival time of
12 ns.

The generated histograms are localized using multiple ap-
proaches. First, the peak is located by finding the mode of the
histogram (alternative initial peak finding methods are more
capable, e.g. [16], and may locate a peak buried in the noise).
Next, the peak is more accurately localized by the following
methods:

1) A center of mass (CoM) calculation spanning ±3σ bins
from the mode. For a Gaussian distributed instrument
response a CoM calculation is a minimum variance
estimator.

2) A non-linear Gaussian fit to the background-subtracted
signal with initial guesses from the known temporal
spread (σ) and the amplitude (N ) as determined from the
mode. The background level is calculated as an average
of a set of TDC bins away from the peak.

3) A center of mass (CoM) calculation after processing
with a Gaussian mask (of standard deviation σ) that is
iteratively positioned to follow the best estimate of the
peak position as per Thompson [19].

From the peak fits the standard deviation of the difference
of the estimated arrival time and the actual arrival time is
calculated to be the localization precision (δ). The computer
code to run Monte Carlo simulations, evaluate the analytical

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIM.2021.3073684

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. TBD, NO. TBD 4

models, and create the figures in this manuscript is available
on GitHub [31].

C. Experimental verification

We captured experimental measurements with the ST
VL53L1X dToF sensor [2], [10] to verify the analytical
models and Monte Carlo simulations. The ST VL53L1X is
a dToF senor with a 16 × 16 array of SPAD pixels and
TDCs that create a timing histogram of photon arrivals. The
sensor system uses a 940 nm Class 1 pulsed vertical cavity
surface emitting laser (VCSEL) that fills the field-of-view
(FoV) of the dToF sensor. The FoV is programmable from
15° to 27°. The VL53L1X implements signal processing
on the sensor to extract object depth, yet in this work we
download the photon arrival histogram and implement peak
localization using a Gaussian fit as described in Section II-B.
The dToF sensor was tripod mounted with a flat target of
uniform reflectivity that filled the field-of-view as in [32].
For controlled background illumination a set of IR light-
emitting diodes (LEDs) with a center wavelength of 940 nm
and full-width at half-maximum of 80 nm (LST1-01F09-IR04-
00) was driven by a programmable DC supply automated
using instrument control software [33]. The sensor output
data includes a histogram of photon return times. Precision
was analyzed using a Gaussian fit to the histogram after first
locating the mode. The fit extracts the arrival time and the
temporal spread (σ) while the average background counts per
TDC bin (b) were determined from reference TDC bins that
record immediately before the laser pulses. The precision was
calculated from the standard deviation of the peak position of
the Gaussian fit to 98 nominally identical measurements.

III. RESULTS

Fig. 2 compares the three analytical calculations of depth
precision to the results from Monte Carlo simulations pro-
cessed with the three different methods as the number of signal
photons is varied. The temporal spread is σ = 100 ps and
the TDC resolution is a = 1.5σ with a background rate per
TDC bin of b = 18.75. The fundamental limit ignores TDC
quantization and background noise and estimates the smallest
precision noise. The CRB consistently estimates a slightly
greater error than that of Thompson with the deviation greatest
at low signal levels (see Fig. 4). The Monte Carlo results
closely track the CRB calculation and provide confidence
in the implementation of this model. For the Monte Carlo
localization, the precision of the Gaussian fit peak processing
method outperforms the CoM and the mask CoM. The CoM
calculation does not filter the tails of the IRF and so degrades
in low signal-to-noise (SNR) scenarios, whereas the mask
CoM performs better in these scenarios since the bins in the
tails are deemphasized. The mask CoM however degrades at
higher signal levels, which in our case is primarily due to an
insufficient number of iterations and target error in the iterative
routine. Based on the close correspondence with the Monte
Carlo results the CRB analytical approach is deemed the most
accurate while the analytical model of Thompson is useful for
estimates that provide design intuition. For the remainder of

the manuscript, histograms from Monte Carlo simulations and
experimental measurements are localized using a Gaussian fit
as this method shows the best precision over a range of SNRs.
Note that our goal is not to evaluate the best peak localization
method(s), but rather to determine the dependence of localiza-
tion precision upon instrument and experiment parameters.

102 103 104

N [Signal photons]

100

101

δ 
[p
s]

MC: Gauss fit
MC: mask CoM
MC: CoM
Thompson
CRB
Fund. Limit

Fig. 2. Lines are analytical calculations of depth precision as the number of
signal photons is varied. Markers are results from Monte Carlo (MC) simu-
lations processed with the three different methods to localize the histogram
peak. The temporal spread is σ = 100 ps and the TDC resolution is a = 1.5σ
with a background per TDC bin of b = 18.75.

Fig. 3 assesses the accuracy of the second and third an-
alytical models as compared to Monte Carlo simulations as
the number of background photons per bin increases with a
constant signal level of N = 1000. Again, the CRB more
closely tracks the results from the Monte Carlo simulation.
Two regimes are evident. At b < 10 the background contri-
bution is insignificant such that the precision is dominated by
the temporal spread, TDC resolution, and the number of signal
photons captured and, as given by (4), plateaus to around√

(100 ps)2+(150 ps)2/12
1000 = 3.4 ps. At high background levels,

the precision noise increases as the square-root of the number
of background photons as predicted by the second term of (4).
Section IV-A further verifies these results with experimental
measurements.

The CRB model most closely tracks the Monte Carlo
results, particularly when the Monte Carlo simulations are
localized using a Gaussian fit to the histogram data. The
Thompson model underestimates the precision error because
the background noise contribution assumes an infinitesimally
small TDC bin size [19]. The deviation of the Thompson
model from the CRB and simulations is most significant at
high background levels and large TDC bins. Using N/b as
the SNR, Fig. 4 displays the percent difference between the
CRB model and the Thompson model for N/b from 0.5 to
100 and a/σ from 0.25 to 4. For a/σ ≤ 1.2 the Thompson
model deviates from the CRB model but at most by 11%.
The most significant deviations are found at low SNR with
large TDC bins. The CRB model most accurately tracks the
Monte Carlo simulations yet the Thompson model beneficially
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Fig. 3. Lines show analytical calculations while markers show Monte Carlo
(MC) results of the depth precision as the number of background photons per
bin (b) is varied with a signal level of N = 1000 and the same instrument
configurations as Fig. 2.

provides a straightforward precision estimate with accuracy
within ≈ 20% of the CRB model except for scenarios with
both low SNR (< 10) and large TDC bins (a/σ > 2).

0.2 0.5 0.9 1.6 2.9
a/σ

100.0

30.8
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2.9

0.9

N/
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8 8 8 8 9
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3 5 8 14 32

1 3 6 15 42 10
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Fig. 4. The percent difference between the CRB timing precision and the
Thompson model as the SNR (N/b) and a/σ is varied. In all cases, the CRB
precision estimate is greater than the Thompson model.

With confidence in the CRB model and the Monte Carlo
simulations, we investigate the optimal TDC resolution for a
given temporal spread. Previous work for imaging arrays [18]
shows an optimal value of a to be a ≈ 1.5σ for the case of
one-dimensional localization. However, in these scenarios, the
background noise is assumed constant independent of pixel

size. For the case of a dToF sensor, in a given environmental
scenario with a certain level of ambient illumination, the
background rate (r) is constant so that the background counts
per TDC bin (b) scales with TDC bin width (b = ra). Fig.
5 presents the localization noise as a/σ is varied for four
levels of SNR (N/b). Solid lines show the CRB calculation
while markers represent the results from the Monte Carlo
simulations.

Fig. 5 shows that the smallest precision noise for a given
SNR (δ0 in Table I) is found at a/σ = 0 which impractically
requires a zero width TDC bin. To determine a realistic TDC
resolution we set an allowable precision degradation due to
finite TDC resolution. To do so, the CRB model is searched
for an a/σ value that produces a 10% and 41% increase in
precision noise at a particular SNR. The results summarized
in Table I suggest an optimum around a = 1.5σ if a precision
degradation due to TDC resolution of ≤ 10% is targeted.
A higher resolution TDC (a < 1.5σ) does not limit depth
precision but is overdesigned and may cost area or power. The
CRB projects a continuously growing precision degradation as
the TDC bin width becomes much greater than the temporal
spread. However, as is shown by the Monte Carlo results
of Fig. 5, the precision plateaus at the quantization noise
limit (dashed line). In this scenario all the signal photons are
confined to a single TDC bin so that interpolation between
bins is not possible, thus the precision noise is set only by the
resolution of the TDC.

0 1 2 3 4 5 6 7 8
a/σ

101

102

δ 
[p
s]

N/b = 200.00
N/b = 20.00
N/b = 2.00
N/b = 0.50
qtz. limit

Fig. 5. Monte Carlo simulations as the TDC resolution (a) is swept with a
constant temporal spread (σ = 100 ps). The ratio of total signal photons to
background photons per bin (N/b) is indicated in the legend for a/σ = 1.
The background signal per bin is scaled by TDC bin size. The solid lines are
the CRB for each of the four N/b levels. The dashed line indicates the limit
as set by TDC resolution (= a/

√
12).

IV. CASE STUDIES

Here we leverage the established models to provide guid-
ance relevant to potential dToF design decisions and experi-
mentally demonstrate dynamic tuning of sensor parameters to
reach a target precision.
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N/b

(a/σ = 1)
a/σ at

δ = 1.1δ0

a/σ at
δ = 1.41δ0

200 1.55 3.22
20 1.47 2.78
2 1.35 2.38
0.5 1.31 2.26

TABLE I
TDC BIN RESOLUTION (a) IN TERMS OF THE TEMPORAL SPREAD (σ)

THAT PRODUCE A GIVEN PRECISION DEGRADATION FOR VARIOUS LEVELS
OF SNR (N/b). THE PRECISION AT a = 0 IS REPRESENTED AS δ0 (NO

DEGRADATION). THE SECOND COLUMN SHOWS THE a/σ VALUES FOR A
10% DEGRADATION OF PRECISION FROM THE ZERO TDC BIN WIDTH
BASELINE, WHILE THE THIRD COLUMN SHOWS THE SAME FOR A 41%

DEGRADATION.

A. Ambient susceptibility

At what level of ambient intensity does the precision of a
dToF sensor degrade and how does this ambient susceptibility
depend upon design parameters? Fig. 6 shows experimental
measurements of the timing precision at an object distance
of 1.5 m overlaid with the CRB model versus background
photons per bin. The measurement is repeated for four ex-
posure times at varying levels of interfering IR LED intensity.
Gaussian fits to the histogram data determined σ = 745 ps and
a TDC resolution of a = 1067 ps. For each exposure time, the
CRB model uses a constant N , σ, and a as determined from
a dataset measured with the interfering IR LEDs off while the
background signal (b) is determined from the experimental
data. The measured data covers an SNR range of 97.8 to
0.38 through which the CRB model tracks the experimental
measurements accurately. At the shortest exposure time of
5 ms the method to localize the histogram peak fails at the
highest levels of background photons.

The Thompson noise expression provides intuition to de-
termine the level of background beyond which the depth
precision is degraded. By equating the left-term (temporal
spread, TDC resolution) of (4) to the right-term (background
noise) we find an expression for the number of background
photons needed to increase the timing noise by

√
2 from the

zero background baseline. This number of background photons
per bin or equivalently the product of background rate (r),
TDC resolution, and the number of laser pulses (P ) is found
to be:

b = raP =
(σ2 + a2/12)aN

4
√
πσ3

. (7)

These values are shown as stars in Fig. 6 and lie 13% below
the CRB curve since the Thompson estimation underestimates
the contribution from background photons to the precision
noise. When the temporal spread dominates quantization noise
(σ2 � a2/12) the background rate (r) that increases the noise
by
√
2 follows the number of signal photons received per

pulse and is inversely proportional to the temporal spread:
r = N/P

4
√
πσ

. The ambient rejection of a dToF sensor (often
reported in lux) is improved by a decrease in the temporal
spread and an increase in laser power or detector collection
efficiency.

101 102 103 104

b (background photons / bin)

101

102

δ 
[p
s]

T = 5 ms
T = 10 ms
T = 33 ms
T = 100 ms

Fig. 6. Experimental measurements of precision versus background photons
for exposure times of T = 5, 10, 33, and 100ms. For each exposure time,
the CRB model is indicated as a dashed line. Experimental measurements
extracted σ = 745 ps and a TDC resolution of a = 1067 ps. The point where
precision is degraded by

√
2 of the zero background baseline is indicated by

a ? as calculated by (4).

B. Tuning laser intensity and exposure time

How should laser power and exposure time be adjusted for a
given target precision? Both the signal and background photon
terms in (4) can be written as the product of a rate of arrival
and the number of laser pulses (P ). To clarify the sources of
precision noise we use N = sP where s is the signal returned
per pulse and b = raP where r is the background rate in
photons/s and find:

δ ∝

√√√√√√√
 σ2︸︷︷︸
spread

+
a2

12︸︷︷︸
resolution

+
4
√
πσ3

a

(ra
s

)
︸ ︷︷ ︸
background

 1

sP
(8)

which shows that the precision noise decreases with the inverse
of the square root of the number of laser pulses. The ratio of
ra
s is the inverse of the SNR: SNR = s

ra = N
b which depends

upon the laser intensity, the object distance and reflectivity, and
the ambient illumination. The first two terms in brackets are
independent of the SNR, while the impact of the third term
upon precision is reduced as the SNR increases. At a ratio of
total signal photons to background photons per bin of

N

b
=

48
√
πσ3

12σ2a+ a3
(9)

the background contribution to the noise is equal to the con-
tributions from the temporal spread and the TDC resolution.
This value of N/b is 2.66 when the TDC resolution is given
as a = 2σ. Fig. 7 shows this transition point as a ? and
demonstrates two regimes of the precision noise. At low N
the noise is dominated by the background and scales as 1/N
while at high N the noise is limited by the signal and scales
as 1/

√
N . Since the power consumption of the laser is the

product of the number of pulses (P ) and the laser photons
per pulse (s) an increase in laser power and an increase in
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laser pulses (i.e. exposure time) impact the power consumption
equally. For power-efficient operation with the best possible
precision, the laser intensity should be increased so that the
background term in (8) contributes minimally. Once this signal
rate is reached a reduction in precision noise is accomplished
nearly equally by an increase in laser intensity, δ ∝ 1/

√
s,

or by an increase in exposure time, δ ∝ 1/
√
P . The proper

parameter to adjust can then be determined by constraints such
as motion blurring, laser capabilities, or eye safety.

100 101 102 103 104
N [Signal photons]

100

101

102

103

δ 
[p
s]

Background 
limited

Signal 
limited

m = -0.98

m = -0.54

Thompson
CRB

Fig. 7. A demonstration of the two SNR regimes. The number of signal
photons are varied while the background photons are held constant (b = 30)
with σ = 100 ps and a = 2σ. The precision noise is shown as calculated by
the Thompson expression (4) and the CRB (6). The two regimes are separated
by a dashed line with the background limited regime to the left and the signal
photon limited regime to the right. The slopes of linear fits to log(N) vs.
log(δ) of the CRB estimate are annotated as m = −0.98 and m = −0.54.

C. Experimental demonstration of dynamic precision tuning

The CRB precision model can be used to tune sensor con-
figuration and predict performance. From a single histogram
the signal, background, and temporal spread can be extracted
and used as inputs to the model. Table II demonstrates this
possibility using experimental measurements captured with the
VL53L1X dToF sensor. Each row of the table represents a
specific set of distance (d), exposure time (T ), and intensity of
interfering IR background. For the configuration of each row,
98 measurements were captured with the estimated precision
calculated from single histograms using the CRB model (Est.
δ) and the measured precision evaluated as the standard devi-
ation of the histogram localization using a Gaussian fit (Meas.
δ). For each of the three cases in the table we demonstrate
how the CRB precision estimate from a probe measurement
can be used to dynamically tune the dToF sensor configuration
or predict performance after an environmental change.

Consider case 1 in Table II with an object depth of 800 mm
and an exposure time of T = 33 ms. A hypothetical power-
aware use case (dynamic A) that requires only 0.5% precision
could be tuned to a shorter exposure time. A single-shot probe
measurement captured at T = 33 ms was used to determine this
updated exposure time by an exhaustive search of the CRB

model with the signal and background photons scaled by a
ratio of the two exposure times. This search finds that closest
available exposure time of T = 10 ms. At this exposure time the
model predicted a precision of δ = 3.80mm and we measured
a precision of 4.89 mm. In this example, the adjustment to the
exposure time reduces the laser power by a factor of ×3.3,
thus saving power. Similarly, a second hypothetical scenario
may require more precision (δ = 1.0mm) than predicted by
the probe measurement and thus the exposure time is tuned to
150 ms (see case 1, dynamic B). Case 2 extends this dynamic
approach to a scenario with the object distance changing from
d to d′ thus scaling the signal photons received by a factor of
(d/d′)2. The signal and background values measured at the
probe position allow for predictions of N and b values at the
new object distance. We input these values to the CRB model
and predict the updated precision (case 2, dynamic A) or
determine the required exposure time to maintain the precision
(case 2, dynamic B). The example of case 3 uses the CRB
model to predict precision performance at a longer range with
minimal background given a measurement with considerable
background at a closer range. Here, the prediction at the
updated distance scales the signal photons by (d/d′)2 and
assumes the background signal to be that measured with no
interfering IR intensity. The dynamic A entry of case 3 shows
predicted and measured precisions of 4.71 mm and 4.84 mm,
respectively. Table II illustrates how the CRB noise modeling
allows measurements from a single histogram measurement to
predict precision given configuration adjustments or changes
in the environment such as object distance or background
intensity.

V. DISCUSSION AND CONCLUSION

Experimental evaluation of dToF sensors often report depth
precision and allowable ambient intensity, yet models that
predict these results from design parameters and the mea-
sured signal and background are not readily available. The
straightforward expression of (4) for depth precision allows
for dToF design and usage insight and correctly predicts tran-
sition points between signal limited and background limited
precision. However, this model underestimates the localization
noise because the derivation of the background noise term
considers the pixel size to be infinitesimal. The CRB model
of (6) integrates the background noise over the pixel size
and thus, tracks the Monte Carlo simulation results more
closely than the Thompson model. As shown in Figures
2, 3, and 5, Monte Carlo simulations with the histogram
location extracted by a Gaussian fit accurately track the CRB
precision estimate versus signal photons, background photons,
and TDC resolution, respectively. The models recommend a
TDC resolution of a ≈ 1.5σ, determine the background signal
beyond which precision degrades, and show that an increase
in laser intensity is more impactful than an equivalent increase
in exposure time when the precision is background limited.

In addition to design intuition, models that predict preci-
sion enable efficient usage of dToF sensors. From a single
return time histogram the depth precision can be estimated to
enable sensor configuration adjustments that target a specific
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Case Description d [mm] T [ms] N b σ/a Est. δ [mm] Meas. δ [mm] Pred. δ [mm]

1
probe 800 33 7224 517 0.807 2.11± 0.02 2.16 -
dynamic A 800 10 1922 138 0.805 4.05± 0.12 4.89 3.80± 0.10
dynamic B 800 150 34065 2431 0.808 0.97± 0.01 1.03 0.99± 0.03

2
probe 800 33 7280 23 0.809 1.66± 0.01 1.99 -
dynamic A 1500 33 2111 23 0.708 2.90± 0.05 3.68 3.12± 0.03
dynamic B 1500 100 6590 73 0.705 1.64± 0.01 1.84 1.79± 0.02

3 probe 800 33 6915 3190 0.792 3.33± 0.10 3.56 -
dynamic A 2050 33 1164 23 0.854 4.81± 0.11 4.83 4.71± 0.27

TABLE II
RESULTS FROM EXPERIMENTAL MEASUREMENTS THAT USE THE CRB MODEL TO PREDICT PRECISION. FOR EACH PROBE MEASUREMENT THE

PRECISION IS ESTIMATED FROM SINGLE HISTOGRAMS USING THE CRB MODEL (EST. δ). N , b AND σ/a ARE THE AVERAGE MEASUREMENTS FOR THE
VALUES DESCRIBED IN THE TEXT. THE MEASURED PRECISION (MEAS. δ) IS THE STANDARD DEVIATION OF THE HISTOGRAM LOCALIZATION WHILE THE

PREDICTED PRECISION (PRED. δ) IS THE AVERAGE OF THE PREDICTIONS MADE FROM EACH OF THE PROBE HISTOGRAMS WITH N AND b SCALED AS
DESCRIBED IN THE TEXT. BOTH EST. δ AND PRED. δ HAVE A ONE STANDARD DEVIATION ERROR RANGE INDICATED.

precision. Future work may incorporate precision estimation
into the embedded system of a dToF sensor used for battery-
powered applications such as smart canes for visually-impaired
people [34]. As the sensor moves and object distances change,
the models can predict the current precision and find an
optimal exposure time that meets the required precision and
no better. This tuning may reduce the power consumption of
the system.

Factors related to the sensor optical system, photon prop-
agation, and object scattering are not explicitly included in
our models. These factors have well-known relationships to
our model parameters: the received signal photons (N ), the
background photons (b), and the instrument timing spread
(σ). This approach of using generalized terms ensures that
the models are widely applicable. One could determine a
specific factor’s effect through the relationship of the factor
to N , b, and σ. For example, consider the SPAD photon
detection efficiency (PDE) which ranges from 0 to 1. The
PDE scales both the signal photons and background photons
detected. By referring to (4) we find δ(PDE)

δ(PDE=1) =
√

1
PDE .

Another factor, object reflectively (ρ), directly impacts the
signal photons collected as N ∝ ρ, while object reflectivity
does not modify the background nor the timing spread. A
third important parameter, object distance (r) causes the signal
photons to fall off as N ∝ 1/r2. Object distance may impact
the timing spread depending on the object field-of-view and
atmospheric propagation. Two relevant pulsed laser parameters
could be evaluated using our models. The laser intensity is
directly proportional to the signal photons and the laser pulse-
width is one contributor to the total system timing spread.
Integration of the detector precision modeling of this work
with physics-based optical modeling [27], [28] is a valuable
future extension. Other extensions include incorporation of
photon pile-up [35], systematic timing errors inherent to merg-
ing multiple SPADs or TDCs [36], and linear APD LiDAR
systems [37], [38]. This work provides dToF designers and
users an accessible yet accurate tool to optimize measurement
performance, including in scenarios with power constraints.
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