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A Python Instrument Control and Data Acquisition
Suite for Reproducible Research

Lucas J. Koerner, Member, IEEE, Thomas A. Caswell, Daniel B. Allan, and Stuart I. Campbell

Abstract—Tools that standardize and automate experimental
data collection are needed for greater confidence in research
results. The National Synchrotron Light Source-II (NSLS-II) has
generated an open-source Python data acquisition, management,
and analysis software suite that automates x-ray experiments and
collects an experimental record that facilitates complete repro-
ducibility. Here we show that the NSLS-II tools are not only useful
for x-ray science at large-scale facilities by presenting an add-
on package that adapts these tools for use in a small laboratory
with common physics and electrical engineering instruments. The
composite software suite eases and automates the execution of
experiments, records extensive metadata, stores data in portable
containers, and speeds analysis through tools for comprehensive
searches. In total, this software suite increases the reproducibility
of laboratory experiments. We demonstrate the software via the
evaluation of two lock-in amplifiers — the miniature ADA2200
and the ubiquitous SRS SR810. The frequency resolution, signal-
to-noise ratio, and dynamic reserve of the lock-in amplifiers
are measured and presented. The usage of the software suite
is described throughout these measurements so that the reader
can implement the tools in their lab.

Index Terms—Computerized instrumentation, Demodulation

I. INTRODUCTION

RESEARCH that can be reproduced is able to be recreated
with exact agreement at different times and in different

laboratories. Reproducible research has become essential for
rigorous computational science and data analysis. Tools that
facilitate reproducibility in these fields follow a literate pro-
gramming paradigm, one that interweaves documentation with
code. Examples include knitr [1], R Markdown [2], pweave
[3], and Jupyter notebooks [4]. However, methods to support
reproducibility of experiments during data collection are less
developed. Automated and reproducible experimental flows
have been developed in a few specific fields. For example, the
integrated circuit industry relies upon automated test equip-
ment (ATE) systems for chip testing before parts are packaged
and sold [5]. Commercial startups have launched automated
laboratories which allow biologists and chemists to outsource
wet-lab experiments (Emerald Cloud Laboratory, Transcriptic,
and Riffyn) [6]. However, a need exists for experiment control
software for small labs, such as those in physics, engineering,
or biology, without staff dedicated to software support. We
address this need by presenting an open-source instrument
control, data collection, and data management software suite
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that eases the process of data collection and facilitates repro-
ducible experiments.

This work builds upon the Bluesky package developed for
data acquisition, management, and analysis at the National
Synchrotron Light Source-II (NSLS-II) at Brookhaven Na-
tional Laboratory [7], [8]. The Bluesky suite for experimental
x-ray science incorporates rich metadata, integrates analysis
with data collection, and provides generic experimental pro-
cedures that can be reused across a wide range of disciplines
with different hardware. The NSLS-II is a large national x-ray
user facility that supports around 1500 users per year from
both academia and industry. Since Bluesky was designed as
a general experimental control system, it is not limited to
use at large x-ray laboratories. To validate the generality of
Bluesky, we adapt it to a small electrical engineering research
laboratory, using a new instrument control Python package
instrbuilder.

Here, we demonstrate the utility and usage of the composite
software suite through detailed experiments that characterize
two lock-in amplifiers. One such example illustrates the basic
use case of this Bluesky software suite (see Figure 1). Instru-
ments are controlled using a computer interface: Bluesky pro-
vides typical experimental procedures, instrbuilder abstracts
instrument specific commands to a generic language, and
Bluesky automatically saves data and metadata that describe
the results and configuration. In the example of Figure 1, to
determine the frequency resolution of the lock-in amplifier,
a function generator was controlled over USB and provided
an input stimulus that was stepped through a range of input
frequencies by Bluesky using generic commands in the form
of ”set frequency”. The lock-in amplifier was configured and
controlled over RS232. The lock-in output data was read
with a generic command similar to ”read magnitude”. At the
completion of the experiment, Bluesky generated data and
metadata organized in key-value pairs that describe the entire
experiment.

Similar experiment control software developments have
been presented in literature. For example, the PLACE package
for Python experimental control is open-source and modular,
but, is not able to leverage the large x-ray source user
community [9]. Further, an x-ray facility consists of many
different beamlines with varying instrumentation and measure-
ment needs, which ensures that the Bluesky suite is generalized
and extensible. We also believe that the instrument driver
generation methodology of our package instrbuilder allows
for quicker implementation of new instrument drivers than the
code based approach of PLACE. Other efforts in open-source
instrument control appear to have been retired based on the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIM.2019.2914711

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. ?, NO. ?, ? 2019 2

code repository, for example [10]. Again, we anticipate that
the large x-ray community will provide a critical mass of users
to maintain this software package.

This software suite implements a list of best practices for
experimental data collection. The practices and the benefits
provided are as follows. The suite:

• Captures rich metadata that is human-readable, is search-
able, fully describes the provenance of data, and records
the configuration of each measurement. Rich metadata
simplifies the process of repeating an experiment and im-
proves accuracy when experimental results are reported.

• Saves data tagged with a unique identifier into containers,
which are portable, extensible, and fully describe the data.
Data portability ensures retrieval of archived experimen-
tal results; data with self-contained descriptors removes
dependencies between data collection and data analysis.

• Generalizes experimental procedures. Abstraction allows
for experimental design reuse and for the sharing of
procedures with other laboratories, even those that use
different equipment.

• Displays and analyzes data during acquisition. Real-
time feedback allows the user to promptly verify an
experimental setup.

The best practices described above simplify the setup and
improve the reproducibility and consistency of experiments.
In addition to the benefits above, a laboratory adoption of this
standardized and automated experimental flow would better
support information sharing between researchers by enforcing
a consistent data collection process.

II. BLUESKY DESCRIPTION

The NSLS-II Bluesky suite consists of a set of Python
packages: Bluesky, ophyd, and databroker. The first, Bluesky,
is the experiment engine and collects data. The second, ophyd,
abstracts hardware so that all devices present a consistent inter-
face to the experiment engine. The final package, databroker,
retrieves and searches data and metadata from a variety of
sources [7].

A. Experimental Control and Data Collection: Bluesky

The Python package Bluesky designs and runs experiments
by communicating with hardware over the unified instrument
interface provided by ophyd. Common experimental proce-
dures, or plans, are prepackaged (e.g. scan to sweep one
control signal); alternatively Bluesky allows users to develop
custom plans. During the course of an experimental run
Bluesky saves data and metadata. The data and metadata is
represented using Python dictionaries with a specified organi-
zation, these dictionaries are referred to as documents. Each
experimental run saves the following documents:

• A run start document which includes metadata available
at the start of the run, such as time, Bluesky plan name,
and a unique identifier (UID).

• A run stop document of metadata available at the end of
a run, such as the completion status and end time.

• A document of measurement events, which includes
values and timestamps of instrument readings. This doc-
ument is saved to a database (e.g. sqlite) that is named
with the experiment UID.

• An event descriptor document which describes the data
in the event document and is used to prime data analysis
tools before data is opened [11].

The Bluesky run engine streams data during collection so
that callback functions, such as visualization (tables and fig-
ures) and data processing, are available live as the experiment
progresses.

B. Data Retrieval and Metadata Searching: databroker

The Python package databroker provides an interface to
retrieve stored experimental data as well as experimental
metadata. Search capabilities are available that query on,
for example, a time-range or a particular metadata key. The
powerful and easy-to-use Python package pandas is leveraged
for data inspection and analysis. When queried, databroker
returns data as pandas data-frames. These data-frames are
flexible and high-performance data structures for data analysis
using Python [12].

C. Hardware Abstraction Layer: ophyd

The ophyd Python package is an interface between low-
level hardware communication and the Bluesky experiment
engine. Each instrument interface is ensured a read command
and, when implemented by the hardware, a set command.
The ophyd package facilitates the hierarchical construction of
complex devices, by allowing the user to build up from signals,
which comprise components, which comprise a device. A
device is the highest level of abstraction within ophyd and
provides additional attributes, such as a list of configuration
signals. Signals specified as a configuration parameter may
be read automatically at the start and end of each run and
included in the metadata.

The design of ophyd is agnostic to the underlying hardware
control system. Control interfaces supported by ophyd are
currently limited to the Experimental Physics and Industrial
Control System (EPICS) [13] through the Python package
pyepics [14]. EPICS is a soft real-time hardware control-
system utilized at large experimental facilities, such as x-
ray synchrotrons and particle accelerators. These large exper-
imental facilities often consist of many networked computers.
By way of EPICS each networked computer may access or
command the state of any connected instrument using the
channel access protocol. The capabilities of EPICS in terms of
performance and scale are clear, yet EPICS is known to be a
challenge to set up and to have a considerable learning curve
[15]. We must create an instrument control-layer to replace
EPICS to achieve the goal of Bluesky experimental control in
a small laboratory.

III. HARDWARE CONTROL IN A LAB WITHOUT EPICS:
INSTRBUILDER

To replace EPICS in the NSLS-II suite we developed
instrbuilder [16], a Python package that reads and controls
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instruments which support ASCII-like communication pro-
tocols, such as the Standard Commands for Programmable
Instruments (SCPI) [17]. The instrbuilder Python package is
independent of the specific controller-to-instrument interface;
both RS232 and USB interfaces have been implemented using
the pySerial [18] and PyVISA [19] Python packages respec-
tively. This package functions as a stand-alone instrument
controller but is predominately intended to be a plug-in for
experiment control using the NSLS-II Bluesky suite.

A. Automated Generation of Instrument Control Drivers Us-
ing instrbuilder

The instrbuilder control driver is built automatically from a
list of commands. The command list is entered using a comma-
separated-value file (CSV) (named command.csv) with each
column defining the attributes of each command. The attributes
indicate: 1) the name, 2) string sent, 3) whether the command
gets values from the instrument, 4) a conversion function,
5) whether the command sets values of the instrument, 6) the
range of allowable values to set, 7) if the command is a con-
figuration parameter, 8) help information, and 9) the subsys-
tem. Basic commands request a value by sending ’command-
string?’ and set a value by sending ’command-string value’.
However, some commands that set or query a value require
additional inputs. To accommodate these scenarios, an optional
input dictionary is used with dictionary keys mapped to
formatting keys in the sent string. This approach simplifies the
software: only one generic get and one generic set method
is used without a loss of coverage. At times, more complex
commands are needed than can be communicated through the
CSV files; in this case, the instrbuilder SCPI class is subclassed
and complex commands are written in Python.

Commands optionally support a lookup table that maps
values sent to and received from the instrument to more easily
interpretable values. The lookup table is also entered via a
CSV file (named lookup.csv) with each row containing the
human-readable name and the corresponding value actually
sent to or returned from the instrument. Commands may
be automatically tested for communication errors and for an
incorrect read-back (a set and get sequence). A help method
returns the command documentation, the limits, return type,
sub-system, and required configuration keys (if any). Help is
requested on a single command, a sub-system, or all of the
commands of an instrument. An instrument is comprised of a
dictionary of commands, with key names taken from the name
of the command.

An integrated circuit (IC) class is also available in instr-
builder. For the IC class, a list of registers replaces the list of
commands that was described for instruments. The IC class
has methods to read, write, and manage register settings. The
register map of the IC is generated as a Python dictionary. Each
register is represented as a Register class that has attributes
to indicate the name; address; whether the register is read
and write, read-only, or write-only; and whether the register
is a static configuration value. An integrated circuit instance
is created from the register map and, in addition to the list
of registers, has attributes that include the slave address and
methods to read and write a register.

B. Integration of instrbuilder with ophyd

An instrbuilder instrument consists of a dictionary of com-
mands, a write method, and a read method. This organization
allows for automated generation of ophyd devices–an ophyd
component is created for each entry in the dictionary of
commands. The ophyd device is the top of the hierarchy and
contains all the components needed to control and acquire data
from an instrument using Bluesky.

IV. BLUESKY APPLICATION: A COMPARISON OF LOCK-IN
AMPLIFIER PERFORMANCE

Now that we have examined the construction of the control
software let us turn to look at an example application. In
this application, we study the performance of two lock-in
amplifiers by controlling all measurements and capturing all
data using the Bluesky suite integrated with instrbuilder. These
demonstrations illustrate different use-cases and capabilities
of Bluesky and instrbuilder. All experimental control code
is maintained at https://github.com/lucask07/instrbuilder/tree/
master/instrbuilder/bluesky demo/lockin tests.

Point-of-care (POC) diagnostic instruments are desired that
result in inexpensive and portable test systems with diagnostic
power similar to that of standard clinical instrumentation [20].
Despite progress made by the microfluidic community in
optical sensing techniques, the detection of the final optical
system typically relies upon standard laboratory instrumenta-
tion that is neither portable nor low-cost. Demonstrations of
optical detection systems often invoke synchronous detection
to isolate the signal from environmental noise sources using
a digital signal processing (DSP) lock-in amplifier, like the
SR810 from Stanford Research Systems (SRS) [21]. The
SRS810, with a weight of 10 kg and dimensions of 43 cm
x 13 cm x 50 cm [22], is not appropriate for deployable
POC instruments; smaller instruments for lock-in detection are
needed.

Miniaturized commercial off-the-shelf integrated circuits
that implement synchronous detection, such as the ADA2200
synchronous demodulator [23]–[25] and the AD8333 I/Q de-
modulator [26], have been demonstrated in laboratory settings.
The ADA2200 is a promising key component of a lock-in
amplifier for certain applications due to the following specifi-
cations: 1) low power consumption of 1.30 mW; 2) miniature
16-pin package; 3) performance specified over the industrial
temperature range; and 4) simple system integration. Other
work has created custom DSP lock-in amplifiers using minia-
ture micro-controllers [27], [28]. Here we present reproducible
methods to evaluate lock-in amplifiers that support the efforts
to develop lock-in amplifiers appropriate for portable instru-
mentation.

Next, we evaluate and compare the performance of the SRS
SR810 and the ADA2200 using Bluesky. The motivations are:

1) To demonstrate the use and benefits of the Bluesky and
instrbuilder software suite in a small laboratory.

2) To present a side-by-side benchmarking of the SR810 and
the ADA2200.

3) To document a standardized test procedure for custom
lock-in amplifier evaluation.
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A. Lock-in Amplifier Description

A lock-in amplifier mixes the input, Vsig(t) =
A cos(2πfsigt + φ), with the reference frequency,
Vref (t) = A cos(2πfref t), to create an output at frequencies
that are the sum and the difference of the signal and reference
frequencies. This output, referred to as the I (in-phase)
component, is:

Vdiff (t) = A cos(2π(fsig − fref )t+ φ)

Vsum(t) = A cos(2π(fsig + fref )t+ φ).

This mixer output is subsequently low-pass filtered to elim-
inate the frequency sum component and leave only the fre-
quency difference component (Vdiff ). An ideal low-pass filter
would output a DC value proportional to the input signal
amplitude when the input is coherent with the reference
(fsig = fref ) and otherwise output zero. The bandwidth of
the low-pass filter determines the dependence of the output
magnitude upon the deviation of the signal frequency from
the reference frequency. The phase difference (φ) between the
signal and reference contributes to the magnitude of the output
signal. To eliminate the need for phase adjustment, lock-in
amplifiers are designed with two mixers: the first, measures the
in-phase I component as described above; the second, mixes
the signal with a 90° phase shifted replica of the reference to
produce a quadrature component, Q [29]. With a two phase
system the magnitude and phase of the input signal are readily
calculated as:

A =
√
I2 +Q2

φ = arctan(Q/I)

The SR810 internally computes the magnitude and phase of
the input signal. The ADA2200 outputs either the I compo-
nent or the Q component (selected by a register bit). This
limitation of the ADA2200 means that the relative phase of
the input signal and the reference signal must remain constant
to unambiguously determine the input amplitude. In practice,
this can be overcome by deriving the signal from the reference
output of the ADA2200 so that the signal and reference are
phase locked.

B. Experimental Setup

The instruments used for lock-in amplifier evaluation and
controlled entirely by Bluesky/instrbuilder include a wave-
form generator (Keysight 33500B), an oscilloscope (Keysight
MSOX-3012A), a digital multimeter (Keysight 34465A), a
power supply (Rigol DP832), and an I2C/SPI controller (Total
Phase Aardvark). Spreadsheets of SCPI commands for each of
these instruments are provided in the instrbuilder repository.
A basic experimental setup for SR810 evaluation is shown in
Figure 1.

The ADA2200 is mounted on the ADA2200-EVALZ de-
velopment board (Analog Devices) with a supply voltage of
VDD = 3.3 V and configured through its serial peripheral
interface (SPI). The analog output from the ADA2200 is dig-
itized by a Keysight 34465A Multimeter with the ADA2200
reference clock (RCLK) triggering a sequence of eight read-
ings (see Figure 2). The offset corrected mean of these

eight samples gives either the in-phase component, I , or the
quadrature component, Q, depending upon the PHASE90 bit.
The Bluesky experimental engine saves the multimeter data to
a file. Statistics that summarize the returned array (i.e. mean)
are calculated and available to the Bluesky live callbacks, such
as a LiveTable.

Typical usage of the ADA2200 includes an analog low-
pass between the ADA2200 output and an ADC (and/or a
digital low-pass filter within a microcontroller). These digital
filters, in effect, extract the eight sample mean (cycle average)
in an RCLK period. Here Bluesky allows more flexibility.
We capture unfiltered data and attach digital filter prototypes
(constructed with the Python function scipy.signal.iirfilter) to
the data stream, which allows investigations of optimal filter
parameters.

C. Frequency and Phase Resolution

The first measurement evaluates the frequency resolution
of the SR810 versus the slope of the low-pass filter and
demonstrates a Bluesky grid_scan. To do so, Bluesky sets
the internal reference frequency (fref ) of the lock-in amplifier
to 1220.70 Hz and configures the waveform generator to
input a zero offset, 2 V pk-pk sinusoid. The Bluesky plan
grid_scan steps the function generator signal frequency (fsig)
through 60 linearly spaced points from fref − 60.0 Hz to
fref +60.0 Hz and steps the filter slope of the lock-in amplifier
through 6,12,18, and 24 dB/oct. A delay attribute for each test
parameter is present in Bluesky; we use this delay parameter
to ensure that the lock-in amplifier result settles to > 9τ (τ
is the filter time-constant) after each step of the frequency
input. At each step, after settling is complete, the input signal
amplitude (A =

√
I2 +Q2) is read from the lock-in amplifier.

As the measurement proceeds the Bluesky LiveTable callback
(shown in Listing 1) updates in real-time.

In [1]: %run Bluesky_demo/Bluesky_demo.py
+-----------+------------+------------+----------+
| seq_num | time | freq | amp |
+-----------+------------+------------+----------+
| 1 | 16:26:00.5 | 4997.00000 | 0.000244 |
| 2 | 16:26:00.8 | 4998.14285 | 0.000244 |
| 3 | 16:26:01.0 | 4999.28571 | 0.000915 |
+-----------+------------+------------+----------+
generator scan ['286692ea'] (scan num: 1)

Listing 1: A Bluesky LiveTable as seen in the IPython console that
shows the lock-in amplifier measured signal amplitude (amp) as the function
generator frequency (freq) is stepped. Table formatting has been slightly
modified to fit one column.

Figure 3 displays the SR810 measured signal amplitude
versus signal frequency. The results match expectations and
demonstrate the trade-off of bandwidth and frequency reso-
lution. For example, with a filter configuration of slope =
6 dB/oct and τ = 30 ms (fc = 5.30 Hz) a signal at a
frequency three octaves from the cutoff frequency (±42.4 Hz
from the reference frequency) is expected to be attenuated by
the filter by 18 dB; an attenuation of 18.18 dB is measured.
Similarly, for a filter slope of 24 dB/oct we anticipate an
attenuation of 48 dB two octaves beyond the cutoff frequency
and measure an attenuation of 49.19 dB. Figure 3, and all
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Fig. 1. A block diagram of the experimental setup to evaluate the frequency resolution of the SR810. From left to right, the figure shows the Python software
packages (green), the computer to instrument communication methods (USB, RS232), and the instruments (gray). The computer represents the point at which
the user interacts with the software suite.
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Fig. 2. A block diagram of the experimental setup used to evaluate the signal-to-noise ratio of ADA2200. The ADA2200 reference clock output (RCLK)
is phase and frequency locked to the on-chip demodulation. The RCLK signal is used as a signal input to the ADA2200 and a trigger to the multimeter.
The summing amplifier has two signal inputs (VIN2, VIN1) to, respectively, inject a coherent signal and an incoherent interferer for evaluation of interferer
rejection. For SNR measurements VIN1 is left open. The multimeter is read and configured over USB by the Bluesky suite. The ADA2200 configuration
registers are written and read over SPI through the Bluesky suite.

subsequent data figures in this paper, are tagged in the
caption with the first six characters of the run UID. This
tagging provides traceability from the manuscript figures to
the data and analysis code. The analysis code to create
each figure is available at GitHub (within the directory instr-
builder/bluesky demo/lockin analysis) [16] and the data and
metadata are available at figshare [30].

The next experiment evaluates the phase resolution of the
ADA2200. The ADA2200 outputs only I or only Q at a
single time, making the evaluation of the frequency resolution
a challenge. This is because when fsig 6= fref the input
signal magnitude is ambiguous as the relative phase of the two
signals continually drifts. Instead, the measurement we present
quantifies the dependence of the output magnitude upon the
phase between the input signal and the frequency reference
when fsig = fref .

Figure 4 shows the ADA2200 cycle average output volt-
age versus the relative phase between the input signal and
the ADA2200 reference clock. Bluesky was used to set the

waveform generator to input a sinusoid and to step the phase
in 60 linearly spaced steps from 0° to 360° using a plan scan.
The waveform generator sinusoid was configured to an am-
plitude of 0.707 V RMS and a frequency of 1220.680 518 Hz.
This frequency was experimentally determined to minimize
the phase drift between the input signal and the ADA2200
reference clock. At each phase step, the average of the
digital multimeter burst reads was recorded as the input signal
magnitude. The measurement of the phase difference between
the input signal and the ADA2200 RCLK was captured by
the oscilloscope and recorded by Bluesky. This oscilloscope
measurement of phase difference is the parameter Phase
displayed in Figure 4. From this experiment we extracted a
phase of positive zero-crossing of 91.8° and a conversion gain
of 1.064 V/(V RMS) as compared to datasheet specifications
of 83° and 1.055 V/(V RMS).
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Fig. 4. Evaluation of the phase transfer function of the ADA2200 with
a constant frequency 0.707 V RMS input sinusoid. Phase [deg] is the
measured phase difference between the input signal and the reference clock.
UID=’b270dad3’.

D. Signal-to-Noise Ratio

The input signal-to-noise ratio (SNR) was evaluated for
the SR810 and ADA2200 using fixed broadband attenuators
(Mini-Circuits VAT and HAT) placed between the waveform
generator output (SR810) or the RCLK output (ADA2200)
and the lock-in amplifier input. A Bluesky list_scan stepped
the attenuation through a list of values (0, 6, 10, 20, 30, 50,

60, 70, 80, 90, 100, and 110 dB). This measurement tested a
single full-scale output sensitivity of 1 V RMS; of course, if
the SR810 sensitivity is tuned based on the amplitude of the
input signal, a wider dynamic range is achieved. Similarly,
for the ADA2200 a preamplifier is not used, but applications
with low voltage input signals would implement a preamplifier
before the input of the chip for optimal performance.

SNR measurements require multiple samples (i.e. an array)
at a single input amplitude and then a calculation of the mean
and standard deviation of the captured array. To do so, Bluesky
configures the SR810 to buffer a sequence of measurements to
internal memory at a fixed sample rate. Once the buffer is full,
Bluesky reads the values. An instrbuilder/ophyd component
SCPISignalFileSave was designed for these array-like return
values. This component saves an array to a user-selected file
format and yields to Bluesky the filename (composed of a
unique id and measurement index number); the filename, un-
like the entire data array, is compatible with the final Bluesky
data record and callbacks for live viewing. An ophyd signal
StatCalculator comprises an ophyd device BasicStatistics

, which can be attached to the component returning an array.
Standard functions from the Python package NumPy such
as, sum, mean, standard deviation, minimum, maximum, and
length are calculated and available in real-time to Bluesky [31].
Using these components, for each attenuation level of the SNR
measurement, Bluesky saved to disk a data array of multiple
measurements and recorded the filename, mean, and standard
deviation of the array. Investigative data post-processing can
retrieve the original data arrays using the filenames logged by
Bluesky during the experiment.

This SNR evaluation procedure requires an operator to
manually switch attenuators between each measurement. To
track the attenuation in the experimental record, a Bluesky
component with get and set methods not attached to an un-
derlying instrument control system was created (ManualDevice
within ee instruments.py). This demonstrates the simplicity of
creating a custom Bluesky instrument automatically tracked in
the experimental data records (four lines of Python code).

Similarly, the ADA2200 SNR was evaluated using a
buffered version of the reference clock (RCLK) chip output
as the input signal. The ADA2200 requires an input common-
mode of 1.65 V; this common-mode voltage is provided as a
chip output at the VOCM pin. Since the attenuators suppress
the DC component a summing amplifier with DC offset adjust,
shown in Figure 7, was used after the attenuation to add the
required common-mode level. The differential output of the
ADA2200 was digitized by the digital multimeter with the
RCLK signal serving as an external trigger. The multimeter
sampled the output level eight times per trigger with cap-
tures timed to measure each of the ADA2200 eight output
sequences. The input signal was measured to be 2.71 V pk-pk
with a 1.6205 V common-mode at a frequency of 390.58 Hz.
Figure 6 shows SNR results for a filter time-constant of
10 ms and a filter-slope of 24 dB/oct. The noise at low input
levels was measured as 80µV RMS. The SNR (Out/Noise)
is >10.8 bits with an input signal of 0.271 V pk-pk, falls to
8.0 bits with an input signal of 0.0271 V pk-pk and is reduced
to 3.1 bits at an input signal of 0.856 mV pk-pk.
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Fig. 5. Evaluation of the SNR of the SR810. At an attenuation of 90 dB or
greater the measured noise is 0. A is the value returned by the SR810 and
is the magnitude of the in-phase and quadrature outputs: A =

√
I2 +Q2.
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Fig. 6. Evaluation of the SNR of the ADA2200 using a low-pass filter slope
of 24 dB/oct and time-constant of 10 ms. At large attenuation the noise
plateaus to 80µV. UID=’f6e88efb’.

E. Dynamic Reserve

The dynamic reserve of a lock-in amplifier quantifies the
rejection of interfering input signals (fint) at frequencies away
from the reference frequency. How much greater in amplitude
can an interferer at f 6= fref be than the input signal at
fref before a 5% error is caused? This specification of lock-
in amplifiers is termed ’reserve’ since an input range is held
’in reserve’ to accommodate noise and interference [29]. To
measure the dynamic reserve, the summing amplifier in Figure
7 combines an incoherent interferer, Vint, and an attenu-
ated coherent signal, Vsig . This measurement demonstrates
a custom Bluesky plan that is adaptive and searches for the

maximum amplitude of incoherent interferer that produces a
change of less than 5% in the result measured in the absence
of an interfering component (see the function adaptive sweep
within dynamic reserve sr810.py at GitHub [16]). The search
is repeated over a range of interferer frequencies. Figure
8 shows the dynamic reserve (20 log 10(Vint/Vsig)) of the
SR810 versus frequency when configured in ’normal’ reserve
mode at a sensitivity of 20µV, a filter slope of 24 dB/oct and
a time-constant of 100 ms. The measured peak value of 86 dB,
outperforms the value of 74 dB specified in the SR810 manual
for the given sensitivity and reserve setting. Of particular
interest is the reserve at the harmonics of the input signal.
With an interferer frequency of fs/2 the reserve decreases to
54 dB.

A similar metric, termed interferer rejection, was measured
for the ADA2200 using the process described above with
one exception. The ADA2200 does not have options for a
non-unity gain from the input to output. Because of this, an
input signal that produces a full-scale output is at the limits
of the input voltage range (set by the power supply) and
any superimposed interferer signal would saturate the input
amplifier. In order to produce a meaningful measurement of
the ability to reject out-of-band interference, a low amplitude
input signal of 6.1 mV pk-pk was input and the Bluesky
algorithm searched for the largest interferer amplitude that
produced an output change of less than 5%. Since the input
signal did not produce an output at 90% of full-scale this
measurement is not precisely quantifying dynamic reserve,
however, this method does accurately communicate the level of
interferer that can be rejected while still correctly measuring a
coherent input. Figure 9 shows the interferer rejection, the ratio
of the maximum interferer signal over the coherent signal, of
the ADA2200 for a 10 ms time-constant low-pass filter with a
6 dB/oct slope (the filter was implemented in Python SciPy).
The rejection is nearly 54 dB at most frequencies away from
the odd harmonics (×3,×1/3, ...) of the input frequency (input
and interferer are both square waves).

−

+

AD8655

RF = 619 Ω

VOUT
R3 = 10 MΩ

VOCM

R1 = 1213 Ω
VIN1

R2 = 1213 Ω
VIN2

50 Ω

50 Ω

R4 = 10 MΩ C1 = 10µF

Fig. 7. Summing amplifier (with optional DC offset) for dynamic reserve
evaluation and signal-to-noise ratio studies of the lock-in amplifiers. When
testing the ADA2200 the common-mode output from the ADA2200 was
connected to the VOCM input. The 50 Ω terminating resistors shown are
either an actual resistor on the board or the termination of inline attenuators.
The AD8655 is powered with split supplies, ±2.5 V, or a single supply, 5.0 V,
when testing the SR810 and the ADA2200, respectively.
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Fig. 8. Evaluation of the dynamic reserve of the SR810 in ’Normal’ reserve
mode, with a time-constant of 20µs and a 24 dB/oct filter slope. The signal
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Fig. 9. Evaluation of the dynamic reserve of the ADA2200. The signal
frequency of 390.5 Hz is indicated with a dashed line. UID=’470bc279’.

V. DATA, METADATA, ANALYSIS, AND CONFIGURATION
EQUIVALENCE CHECKING

The Python package databroker is the interface to the anal-
ysis of data captured by Bluesky. The document organization
of Bluesky data is used by databroker to: 1) access experi-
mental metadata, 2) provide additional methods attached to the
metadata which summarize available information, 3) search on
metadata by keyword, and 4) lazily load data. To analyze lock-
in data we track the experimental run using the UID, review
the experiment configuration programmatically by inspection
of the metadata, and utilize the analysis capabilities provided
by Python pandas and NumPy to process the data once loaded
by databroker.

The experimental data described in this paper are archived
at figshare [30]. The archive includes: 1) event data 2) run
start, run stop, and event descriptors metadata and 3) a
databroker configuration file. The instrbuilder GitHub repos-
itory provides the analysis code for each of the data fig-
ures in this paper and a script that runs the entirety of
the analysis (see run all analysis.py in the directory instr-
builder/bluesky demo/lockin analysis/) [16]). As part of the
data processing, examples of experimental run metadata, such
as the duration of the experiment and time of the run, are
printed to the analysis console.
A. Instrument Configuration Equivalence Checking

The instrbuilder Command class includes a property which
indicates whether a readable value should be considered a
configuration parameter. These configuration values are not
expected to change over the course of the run, however are
a critical component of experiment reproducibility. An API
read_configuration() is provided by Bluesky that reads all
components of a device which are specified as configuration
parameters. As a part post-processing, the equivalence of every
configuration parameter for experiments that are nominally
expected to be the same can be checked. This automated veri-
fication of equivalent configuration is an essential contribution
of the Bluesky/instrbuilder suite to experiment reproducibility.

As an example of metadata equivalence checking we present
processing code that inspects the SR810 signal-to-noise mea-
surements. This example first searches for experimental runs
with the purpose ’snr SR810’. Next, the code compares con-
figuration values from the metadata of two distinct runs found
in the search. In the process, the programmatic comparison re-
veals 43 configuration keys of the lock-in amplifier and detects
two differences, which are printed. Listing 2 shows the IPython
console output from this metadata processing example (meta-
data examples.py in the directory instrbuilder/bluesky utils/
[16]). This automated recording of all configuration data and
organization into Python dictionaries is facilitated by the hi-
erarchical approach to instrument construction as a collection
of signals.

B. Software Setup and Getting Started

The instrbuilder package is hosted at PyPI, references the
NSLS-II Bluesky suite dependencies, and can be installed
using pip. Complete setup instructions for use in a small
laboratory are available at the README on GitHub [16]. Most
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In [1]: %run metadata_example.py
Found 24 runs with the purpose of snr_SR810
Comparing:
UID = 5b9c4bf7-55c6-45ce-99c3-e717be0d1ef3 to
UID = a71988ee-2da4-486f-9fd2-f9755130695d

Located 43 configuration keys to compare:
Found configuration difference:
Run 1: lockin_sample_rate = 32.0
Run 2: lockin_sample_rate = 1.0

Found configuration difference:
Run 1: lockin_tau = 0.01
Run 2: lockin_tau = 0.1

Listing 2: An example of configuration equivalence checking using the
Bluesky metadata within an IPython console. The analysis code first searches
for experimental runs tagged with the purpose of ’snr SR810’ and then
compares the configuration of two of these runs. These two runs have 43
configuration keys in common which are compared – two differences are
found.

laboratories do not have a lock-in amplifier to exercise the
examples in this paper. As such, we created a Bluesky/instr-
builder demonstration using a function generator and an oscil-
loscope [16]. In addition, Bluesky tutorials that do not require
hardware but instead exercise simulated hardware from ophyd
are available (see http://nsls-ii.github.io/bluesky/tutorial.html).

VI. DISCUSSION

The ADA2200 has potential as a key component of a lock-
in amplifier in power and volume constrained applications.
The analog sampling of the ADA2200 reduces the sampling
rate needed of a downstream ADC and limits the complexity
of subsequent digital signal processing algorithms (i.e. an IIR
lowpass filter); a small and low-power microcontroller could
be used in conjunction with the ADA2200 to create a lock-
in amplifier. In terms of noise floor, 80µV (at 24 dB/oct
filter), and interference rejection, 54 dB, the ADA2200 can
extract millivolt level coherent signals superimposed among a
full-scale (3.3 V) incoherent background. With an input signal
of 6.1 mV pk-pk out-of-band interferers (at frequencies away
from harmonics of the input signal) reached 3.02 V pk-pk
without causing a greater than 5% deviation to the output
signal. Larger input amplitudes were not tested due to the
specifications of the minimum and maximum allowable input
signal voltages of 0.3 V and VDD − 0.3 V, respectively. Opti-
mization of noise, interferer rejection, and transient response
is possible for a specific application by modifications of the
low-pass filter parameters.

Since the ADA2200 outputs only one of I or Q at a time
some flexibility in experimental design is sacrificed. In most
cases, this can be handled by designing an instrument that
buffers the RCLK output and uses this as the sample stimulus.
On the other hand, the SR810 can output measured phase,
measured magnitude, or I; and the SR810 can lock to a replica
of the sample stimulus signal. These capabilities and the wide
range of configurable sensitivities (2 nV to 1 V) increases ex-
perimental flexibility and convenience of the SR810. However,
the ADA2200, with a power consumption of ∼1 mW at a
supply voltage of 3.3 V and an analog performance that spans
∼54 dB, is an intriguing building block for lock-in detection
in portable instrumentation.

VII. CONCLUSION

Experiment reproducibility starts at data collection. The
methods and computer code used for data collection should
be clear and general so that others can reproduce a research
result starting with the experiment. Or, in the classifications
of reproducible computational research described by Stodden
[32], the experiment should be replicable. The data itself
should be archived so that it is portable, self-contained, and
contains complete details of the configuration of the experi-
ment, or per Stodden, auditable [32]. The software package
described above accomplishes these goals. The hierarchical
approach to instrument construction of the Bluesky suite fa-
cilitates recording of self-contained data records that describe
instrument configurations; the command generation approach
of instrbuilder abstracts instrument specific commands to a
generic language so that experimental code can be replicated
by other laboratories.

This paper introduces the Bluesky and instrbuilder combi-
nation as a capable software suite to control experiments. We
acknowledge that many capabilities of Bluesky were left out.
Exciting future developments that may be contributed by a user
community include integration with laboratory cameras by
leveraging the Bluesky/ophyd interface to x-ray area detectors,
asynchronous acquisition using the Bluesky/ophyd ”flyers”
interface, and live image viewing that utilizes real-time video
encoding.
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portable low frequency lock-in amplifier designed for photoacoustic
measurements and its application to thermal effusivity determination
in liquids,” Review of Scientific Instruments, vol. 89, no. 3, p. 034904,
2018.

[26] B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom,
and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated
raman scattering,” Science, vol. 330, no. 6009, pp. 1368–1370, Dec.
2010.

[27] L. E. Bengtsson, “A microcontroller-based lock-in amplifier for sub-
milliohm resistance measurements,” Review of Scientific Instruments,
vol. 83, no. 7, p. 075103, 2012.

[28] G. Li, M. Zhou, F. He, and L. Lin, “A novel algorithm combining
oversampling and digital lock-in amplifier of high speed and precision,”
Review of Scientific Instruments, vol. 82, no. 9, p. 095106, 2011.

[29] M. L. Meade, “Advances in lock-in amplifiers,” Journal of Physics E:
Scientific Instruments, vol. 15, no. 4, pp. 395–403, Apr 1982.

[30] L. Koerner, “Lock-in amplifier data collected using Python instrument
control suite of Bluesky and instrbuilder,” Feb 2019. [Online].
Available: 10.6084/m9.figshare.7768352.v1

[31] T. Oliphant, “NumPy: A guide to NumPy,” USA: Trelgol Publishing,
2006–. [Online]. Available: http://www.numpy.org/

[32] V. Stodden, J. Borwein, and D. H. Bailey, “Setting the default to
reproducible,” Computational Science Research. SIAM News, vol. 46,
no. 5, pp. 4–6, 2013.

Lucas J. Koerner received B.A. degrees in Integrated Science (Hons),
Physics, and Mathematics from Northwestern University in Chicago, IL, USA.
He then received the degree of Ph.D. in Physics from Cornell University
in Ithaca, NY, USA. Since 2018 he is an Assistant Professor of Electrical
Engineering at the University of St. Thomas, St. Paul, MN, USA. His
research interests include electrical instrumentation development, software for
reproducible research, and image sensors.

Thomas A. Caswell received B.S. degrees in Physics and Mathematics from
Cornell University, Ithaca, NY, USA, and the Ph.D. degree in Physics from
University of Chicago, IL, USA. He is currently scientific staff at Brookhaven
National Lab, Upton, NY, USA and is a co-lead developer of matplotlib.

Daniel B. Allan received B.S. degrees in Physics and Mathematics and B.A.
in Music from the University of Rochester, NY, USA, and a Ph.D. degree in
Physics from Johns Hopkins University, MD, USA. He is currently scientific
staff at Brookhaven National Lab, Upton, NY, USA.

Stuart I. Campbell received his B.Sc. (Hons) and Ph.D. degrees in Physics
from the University of Salford, UK. He has previously held scientific staff
positions at Rutherford Appleton Laboratory and Diamond Light Source
in Oxfordshire, UK and Oak Ridge National Laboratory, TN, USA. He is
currently scientific staff and group leader for data acquisition, management
and analysis within the NSLS-II at Brookhaven National Laboratory, Upton,
NY, USA.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIM.2019.2914711

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


