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Abstract—Time-of-flight (ToF) sensors with single-photon avalanche diodes (SPADs) estimate depth by accumulating a histogram of
photon return times, which discards the timing information required to measure depth dynamics, such as vibrations or transient motions.
We introduce a method that transforms a direct ToF sensor into a depth frequency analyzer capable of measuring high-frequency motion
and transient events using only lightweight, on-sensor computations. By replacing conventional discrete Fourier transforms (DFTs) with
one-bit probing sinusoids generated via oversampled sigma-delta modulation, we enable in-pixel frequency analysis without multipliers or
floating-point operations. We extend the lightweight analysis of depth dynamics to Haar wavelets for time-localized detection of brief,
non-repetitive depth changes. We validate our approach through simulation and hardware experiments, showing that it achieves noise
performance approaching that of full-resolution DFTs, detects sub-millimeter motions above 6 kHz, and localizes millisecond-scale
transients. Using a laboratory ToF setup, we demonstrate applications in oscillatory motion analysis and depth edge detection. This work
has the potential to enable a new class of compact, motion-aware ToF sensors for embedded deployment in industrial predictive
maintenance, structural health monitoring, robotic perception, and dynamic scene understanding.

Index Terms—Computational Photography, Depth sensing, SPAD LiDAR, Spectral analysis, Signal processing in embedded systems

1 INTRODUCTION

IME-of-flight (ToF) depth imaging systems that combine
T a pulsed laser with a sensor that counts and time-stamps
individual photon arrivals [1], [2] are becoming increasingly
precise and widely deployed, including in consumer devices
such as smartphones [3]. These sensors measure the travel
time of photons to estimate the distance of objects in a scene.
Traditionally, ToF measurements are applied to static depth
imaging. Yet, objects often move or vibrate, and capturing
these dynamics can reveal properties relevant to applications
such as industrial predictive maintenance, remote respiration
monitoring, and acoustics. Beyond these domains, dynamic
depth measurements present opportunities for further explo-
ration in ToF computer vision — for example, using camera
motion to infer surface topology or leveraging velocity
cues for motion segmentation. Incorporating dynamics is
a powerful extension, especially given the small size, low
cost, and increasing integration of ToF sensors into everyday
devices, which may enable broad adoption across diverse
applications.

Although ToF sensors offer picosecond-scale timing preci-
sion, practical constraints limit their ability to capture tempo-
ral dynamics. The first bottleneck is the output data interface
— reading out every individual photon timestamp from a
large-format array would require data rates beyond 100
Gbits/second Ethernet [4], which is impractical for power-
constrained devices. The second bottleneck is pixel size,
which limits the area for storing and processing timestamps
on-chip. Current ToF sensors address these challenges by
accumulating arrival times into per-pixel histograms [1].
After many laser pulses, the histogram data is transferred and
processed to determine the average depth. This histogram
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compression reduces output bandwidth and fits within the
area of a pixel, but discards the association of the photon
travel time with the laser cycle which prevents the analysis of
how depth changes with time. A method that preserves the
dynamics of photon arrival times while remaining practical in
terms of output bandwidth and in-pixel compute is needed.

To address these challenges, we develop new on-sensor
storage and processing methods that preserve the temporal
dynamics of photon arrival times to create a depth frequency
analyzer. Our frequency-domain analysis extracts the ampli-
tude of motion at each frequency to reveal vibrations relevant
to structural health monitoring, acoustics, or the rotational
speed of moving objects such as drone rotors. To capture
non-repetitive or transient motions, we complement Fourier
analysis with Haar wavelet analysis, which localizes motion
in time and estimates velocity.

Our approach respects the limitations of in-pixel compu-
tation and storage, yet approaches the resolution and noise
of a conventional discrete Fourier transform that would
impractically require readout of all timestamps. For in-pixel
frequency analysis, we leverage the significant difference
between the ToF laser repetition rate and scene motion
frequencies to perform in-pixel frequency probing with one-
bit oversampled sinusoids. These binary basis functions
eliminate the need for multiplications or sinusoidal evalua-
tions, making this approach well-suited for future large-scale
ToF arrays and energy-constrained edge-computing imaging
systems.

While high-end systems such as laser Doppler vibrome-
ters [5] or high-speed cameras [6] can capture fine motion
dynamics they are typically bulky, power-hungry, and un-
suitable for integration into embedded or portable systems.
Conventional camera-based methods are constrained by
frame rate, require significant computation, and depend
on ambient texture or lighting. In contrast, our approach
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Fig. 1. Overview of a time-of-flight sensor designed to operate as a frequency analyzer of object depth while respecting hardware limitations. (a)
Object depth §(t) varies over time as §p + dm (t). The ToF system pulses a laser at discrete time intervals n and the returning photons are detected
by a single-photon avalanche diode (SPAD), with the photon return time digitized by a time-to-digital converter (TDC) to estimate object depth,
5[n']. Each depth sample is accumulated into spectrum memory bins Y; .o[k] based on one-bit (+1) probing waveforms I;.[n] and Qy[n] generated
by a sigma-delta (3A) modulator. (b) Full-precision Fourier basis functions for frequencies k and k£ + 1 are shown alongside a short segment of

their one-bit ©A representations (indicated by a vertical gray box). At a particular snapshot in time (n = n/;

vertical line) the sign of the one-bit

waveform determines whether the current depth sample is added to or subtracted from the corresponding Y7 ¢ [k] memory elements (bold and thin
outlines, respectively). In this example, I}, = 1 so that the depth measurement adds to Y;[k] and Q; = —1, which causes the depth measurement to

be subtracted from Y [k]. Simultaneously, in the k + 1 frequency bin, the depth measurement is added into both Y; [k + 1] and Yg [k + 1]. (

c) After

sensor readout, a discrete Fourier transform of the object depth is calculated with each 1/Q pair determining the amplitude at a discrete frequency (d)
Experimental results using a pulsed-laser ToF system measure a rapid depth square wave. Frequency-domain analysis recovers the 7th harmonic
(7 fo = 6.3 kHz) with an amplitude of 270 um, which is not visible in a super-slo-mo video recorded at 240 fps.

enables high-temporal-resolution motion sensing, albeit with
less amplitude resolution, using direct depth measurements
and minimal on-sensor resources making it complementary
to camera-based systems. Table 1 summarizes key differences
between conventional cameras and our ToF sensor for mea-
suring dynamics. Sec. 8 explores future applications enabled
by the miniaturization and spatial coverage of our embedded
ToF frequency analyzer, inaccessible to conventional LDVs.

This manuscript introduces methods for ToF frequency
analysis and describes the proposed hardware compatible
one-bit probing method in Sec. 3. Challenges unique to
ToF frequency analysis including timing jitter, background
photons, and missed pulses are evaluated with methods
for mitigation in Sec. 5. Simulations (Sec. 6) evaluate the
performance dependence on measurement parameters and
validate an analysis of the noise limits. Laboratory experi-
ments of Sec. 7 detect dynamic depth features at frequencies
beyond 5 kHz, align with analytically established noise limits,
and localize depth transient signals using wavelet capture.
In total, this work proposes and evaluates new designs
that transform a direct ToF sensor into a depth frequency
analyzer while maintaining compatibility with future large-
scale arrays and embedded platforms.

Scope and Limitations: This work demonstrates fre-
quency analysis of depth dynamics using synthetic and
laboratory time-stamp data from a single-pixel direct ToF
sensor. While the approach is designed to be compatible
with in-pixel implementation, it does not address full-array

scalability or real-time operation. Although the impact of
background photons is analyzed, the current design is not
expected to operate robustly under high ambient light, such
as outdoors; future work may address this limitation through
timing window optimization or adaptive filtering.

2 RELATED WORK

Single-photon frequency extraction: Wei et al. [7] demon-
strate frequency extraction of photon flux from DC to 31 GHz
using single-photon avalanche diodes (SPADs) in a passive
setup, unsynchronized with illuminators. They achieve
this by transforming photon arrival timestamps through
a Fourier probing basis, identifying spectral content, and
suppressing bands without significant signal, showcasing
the potential of photon sensing at picosecond-scale temporal
resolution for GHz videography. Frequency domain analysis
of single-photon ToF data has also been proposed to extract
the Doppler shift for velocity estimates [8], [9]. Our work
emphasizes practical sensor designs for synchronized ToF
frequency analysis, focusing on spectral analysis of depth
variations from object motion.

Compressive ToF sensing and resource-constrained
signal processing: Compressive acquisition strategies for
static depth measurements by direct ToF sensors aim to
reduce in-pixel memory usage, limit output data bandwidth,
and improve robustness to background light. Compressive
histograms that accumulate on the fly use linear matrix



TABLE 1
Comparison of conventional camera-based motion sensing and the
proposed dynamic-aware ToF sensing.

Specification Camera-Based Dynamic-Aware ToF
Motion Sensing (Proposed Method)

Temporal Frame-limited 100+ kHz probing

resolution (30-240 fps) rate

Motion estimation  Indirect or learned Direct

method

Power Moderate to high Low (on-sensor;

consumption integer-only logic)

Lighting / texture  Required Not required

encodings that are hand-crafted [4] or learned [10] to exploit
the limited bandwidth of the laser pulse and compress
the depth data without considerable information loss. A
sketching framework extracts summary statistics from the
characteristic function of the photon returns to minimize
in-pixel memory [11]. Fourier domain histograms have been
developed for low-latency non-line-of-sight imaging [12].
Our method uses one-bit signal processing to enable low-
power and low-complexity computation. Digital filters oper-
ating on oversampled single-bit signals have demonstrated
power and area savings as compared to operating on a full
resolution signal [13], [14].

Non-contact optical sensing of motion: High-speed
videography combined with laser speckles or physical mark-
ers enables 3D point tracking and digital image correlation
(DIC) [15]. Marker-less methods have been used for modal
analysis [16], optical microphones [6], or to estimate material
properties [17]. These video-based methods often leverage
motion magnification [18] or phase-based detection [19] to
resolve subtle sub-pixel motions. However, these camera-
based methods are limited by frame-rate, are only sensitive
to in-plane motion, and require texture [16]. A dual-camera
system expanded the frequency range to 63 kHz by exploiting
the fast line times of rolling shutter exposures [20]. Outside of
cameras, a triangulation-based LiDAR system demonstrated
audio extraction to 1.25 kHz [21]. Recently, the iPhone’s direct
ToF sensor was used for nodal vibration analysis and sensed
mm amplitude oscillations up to 7.5 Hz, constrained by the
frame rate [22]. In contrast, our proposed methods perform
in-pixel processing to decouple measurement frequency from
the sensor frame rate.

Interferometric and phase-based vibrometry: Laser
Doppler vibrometers are sensitive detectors of object velocity
with applications in structural health and modal analysis [5]
and are typically custom and expensive. If spatial resolution
is required the laser spot must be scanned which slows
acquisition times. Here, we investigate the feasibility of out-
of-plane vibration measurements without scanning using
inexpensive and lightweight depth sensors that are appropri-
ate for wide deployment in smartphones and robots.

3 METHODS FOR FREQUENCY ANALYSIS
3.1

This work investigates how dynamics of object depth can be
extracted by pulsed-laser time-of-flight sensors. The object
depth may be decomposed into fixed and time varying

Problem Definition

3

components as: §(t) = dg + 0., (t) (Fig. 1(a)). The variation
may be from oscillatory vibrations, motion along the optical
axis, or camera motion that varies the topology of the object
surface within the field of view of the sensor. The pulsed
laser transmitter probes the object depth at discrete time
intervals with an inter-pulse interval of T which is set by
capabilities of the laser driver, eye-safety, and by the desired
maximum depth of the measurement. The laser probe can
be pulsed (on) or gated (off) at each discrete time interval
and is defined as a bit stream as: L[n] € {0,1}, with time
discretized as t = nTs. We assume that continuous variations
in the laser intensity are not practical.

The object displacement during photon travel is rea-
sonably approximated to be insignificant. Because of this
assumption, the system measures object position §(t = nT})
when the laser is pulsed at cycle n. When the SPAD receiver
detects a returned photon the arrival time is digitized by a
time-to-digital-converter (TDC). This estimate of the object
depth, §[n]/(2¢), where ¢ is the speed of light, is spread by
the instrument timing jitter with variance o7 and quantized.
Readout of each time-stamp is impractical due to output
bandwidth limitations. So strategies must be developed to
store each TDC result into in-pixel memory slot(s) that
preserve the spectral content (frequency and amplitude)
of the depth measurement. To do so, we consider a (two-
dimensional) array of memory elements Y, [k] that store the
depth measurements. The memory has M slots indexed by
m and each slot has a set of frequency bins indexed by k.
The general update strategy is

Ym[g(& k,m,n)] < Ym[g(& k,m,n)] + h((g7 k,m,n).

where h(d;k, m,n) modifies the measured depth value
and g(5 ;k,m,n) determines the set of memory slots and
frequency bins that are updated. In practice, the memory
Y. [k] could be represented as a single extended histogram.
However, the concept of a 2D memory organization is
retained here for clarity.

3.2 Discrete Fourier Transform

The baseline measurement of the frequency content in the
object depth from N discrete measurements (or laser pulses)
is the discrete Fourier transform (DFT), defined as:

o N2 5
Y[k] = ¥ > dnle 7w k=0,1,...,N-1, (1)
n=0

where the transform frequency fi = % = % with

fs = 1/T. For this calculation, multiplying by the frequency
basis e %% is h(d; k,m,n). The DFT result is complex
with an amplitude of |Y[k]| and phase of ZY[k] for the
frequency component k. To store both real and imaginary
parts each measured frequency requires two distinct on-
chip storage elements for a total of 2/N. The calculation of
each frequency bin is independent of other bins so a design
may skip particular bins if, for example, the hardware is
constrained by memory or if a limited range of frequencies
are of interest. For on-chip streaming DFT calculations the



record length, N, is predetermined, and the update policy
following each laser pulse, n, is

Yi[k] + Y7[k] + 8[n] cos <2§Im) )

Yolk]  Yolk] + d[n] sin (%m) )

where m = 0, m = 1 are renamed to I for in-phase and
@ for quadrature, respectively, to follow the conventions of
spectrum analysis (see Fig. 1(a)). Next, we consider capture
schemes that respect hardware limitations yet allow for the
measurement of the amplitude at specified frequencies k.
The performance of the proposed capture schemes will be
evaluated in relation to this DFT baseline.

3.3 Oversampled Modulation

The DFT algorithm of (2) and (3) requires continuous
calculation or lookup of sines/cosines and full-precision
multiplications which may be too complex for in-pixel
computation. Instead, a lighter weight alternative is pursued
that replaces the sine/cosine calculation and multiplication
with single bit modulation that controls accumulation into
memory location(s) and/or laser pulsing. The key insight
is that the frequencies of object motion (~1kHz) are typi-
cally considerably less than the frequency of laser pulsing
(~10MHz) so that probing sinusoids can be generated by
an oversampling one-bit modulator such as a sigma-delta
(XA) modulator'. One-bit modulated signals replace the full-
precision complex multiplications of the DFT with simple
switching operations to increase the feasibility of on-sensor
calculation.

Sigma-delta modulators are defined by the oversampling
ratio (OSR), modulator order and topology, and the bit depth
of the quantizer [23]. The oversampling ratio is set by the
ratio of the sampling frequency (f) and the frequency of the
generated baseband waveform (fy) as OSR = 27 = Qf—o A
greater OSR reduces the quantization noise in the baseband
by shifting it to higher frequencies. The SNR of a two-level
modulator in decibels can be approximated based on the
power-of-2 OSR (d) and the modulator order (©) as:

SNRgp ~ 7.78+1010g,1(20+1)—9.940+3.01(20+1)d (4)

with the effective number of bits (ENOB, see Fig. 2(d))
calculated as log,(SNR) [23].

Fig. 2 demonstrates a XA modulator with a 50 kHz input
signal and a sampling rate of f; = 10 MHz to align with
typical laser pulsing rates of a ToF sensor. The Fourier
transform of Fig. 2(c) shows that the modulator shapes
quantization noise out of the signal band and to high
frequencies. The high frequency quantization noise requires a
signal pre-filter to exploit the noise shaping of the modulator
to be discussed in Sec. 5.3.

The AY modulator is a causal system that generates an
oversampled, lower resolution representation of the input
signal in real-time. In this application, real-time operation
is not required, and a non-causal noise-shaping approach
could be theoretically used. However, we chose to leverage
the highly developed technology of causal ¥A modulators.

1. In this work we do not extensively explore the parameter space of
one-bit modulators.
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Fig. 2. (a) A full-precision in-phase (I; cos) waveform for probing at
50kHz. The vertical rectangle shows the time-span of the one-bit
modulated representation. (b) I[n] is the one-bit ©A representation
of the full-precision waveform generated by a 3rd order modulator with a
sampling rate of fs = 10 MHz. (c) The discrete Fourier transform (DFT)
of the one-bit modulated waveform of (b) with a duration of 33 ms. The
DFT shows a signal-to-noise ratio of 164 dB. (d) The effective number
of bits (ENOB) calculated using (4) remains above 12 bits (dashed black
line) for signal frequencies less than 297 kHz.

3.3.1 Two-level I/Q Modulation
For each frequency, fi, = k]{f, to be measured, a one-

bit representation, +1, of the continuous cosine and sine
waveforms are generated via sigma-delta modulation as
Ix[n] and Qg [n|, respectively. As shown in Fig. 1, the update
algorithm of the storage elements is

Yy [k]  Yi[k] + 61 [n] ®)
Yolk] « Yolk] 4 6Qx[n]. (6)

At the end of a frame the amplitude at frequency index £ is
calculated as

[VIH| = o /ViIH? + YolKP 7)

The average depth value is available from the frequency
bin of k = 0 with an amplitude of |V [k=0]| = +Y;[k=0].
Each frequency may be probed simultaneously with the limit
set by the number of storage elements and the number of
measurements V.

3.4 Walsh-Hadamard Transform

Walsh functions form a complete orthogonal set and take
values exclusively of -1 and +1 [24]. The Walsh-Hadamard
transform does not require multiplications, which offers
implementation benefits similar to the proposed XA modu-
lation of the Fourier basis functions. While the Hadamard
transform, computed using Walsh functions, represents the
signal in terms of piecewise constant basis functions rather
than sinusoidal frequency components, it does not directly
decompose the signal into frequency bins. However, it can
be converted into the discrete Fourier transform (DFT) [25].
This conversion typically requires computing the Hadamard
transform up to at least the bandwidth limit of the signal
[26] which may place significant demands on on-chip storage
resources. In contrast, direct frequency analysis using XA
modulation allows for a more flexible selection of frequency



bins, making it advantageous when storage is limited. If
measuring the DFT, the system can be configured to allocate
storage resources specifically to frequencies associated with
important dynamics.

4 METHODS FOR NON-REPETITIVE DYNAMICS

Fourier analysis is well-suited for analyzing repetitive and
periodic signals. However, certain applications require mea-
suring transient, or single-shot, dynamics of scene depth.
Such applications include characterizing scene topology,
detecting depth edges in the presence of ToF sensor motion,
and estimating object velocity. In these scenarios, it is
beneficial to both quantify the amplitude of transient depth
variations and also localize them in time. Wavelets provide a
joint time-frequency representation that enables the analysis
of such transient components.

For hardware compatibility and background rejection, we
select finite-support Haar wavelets, generated as dilated and
shifted versions of the Haar mother wavelet:

1, 0<t <05
~1, 05<t <1
0, otherwise

Vo o(t') =

where t’ is normalized time, ¢’ = t/(NT,) = n/N. Wavelets at
different dilation levels and shifts are defined as:

\I/um(tl) = \11070(2’“# — U) (8)

where u is the integer dilation factor and v is the shift
index, with 0 < v < 2% — 1 (Fig. 3(a)). We adopt the
convention where u = 0 corresponds to the coarsest scale,
i.e., a wavelet spanning the full signal duration. This makes it
straightforward to truncate overly fine temporal resolutions.

This two-level wavelet-based approach is compatible with
our proposed on-sensor electronics, which accumulate the
depth signal using +1 modulated control signals (Fig. 1(a,b)).
The memory is updated as:

Y [v] < Yy [v] + 6[n] ¥, (n/N). )

To analyze up to a scale of U, a total of 2+ — 1 memories
are read out. Wavelet coefficients w,,, are calculated by
normalizing Y, [v] by the length of the wavelet. These
coefficients can be processed into a scalogram that localizes
and quantifies depth transients (Fig. 3(c)), with data at coarse
scales interpolated to match the resolution of finer scales.
The synthetic depth signal of Fig. 3(b) contains 100,000 times-
tamps (e.g., a 10ms capture at 10 MHz repetition rate) while
the scalogram is generated from only 127 discrete wavelet
transform coefficients for an output data compression of
787x. A hardware implementation could toggle between
Fourier and wavelet analysis with a simple reconfiguration
of the same sensor.

5 NoOISE LIMITS AND OTHER CHALLENGES

In this section, we present the noise limits of spectrum
analysis using photon time-stamps, examine degradation
from background photons and possible mitigation tech-
niques, and describe methods for handling pulses without
a detection, windowing for the Fourier transform, and pre-
filtering needed to exploit the noise shaping properties of
sigma-delta modulation.
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Fig. 3. (a) The non-zero values of the first four scales (u) of the Haar
wavelet (offset vertically for clarity). At each scale the shifts takes a
different color (e.g., at scale v = 3, 16 shifts span the total range). (b)
A synthetic depth signal versus time with a brief transient impulse, a
rising edge, and a slower falling edge. (c) A scalogram from Haar wavelet
analysis of the dynamic depth signal localizes the impulse, shows the
moderate rate rising edge at middle scales (blue), and the gradual falling
edge at lower scales (red).

5.1 Noise

5.1.1

The noise floor of the Fourier transform is determined by the
variance in the time domain, which is related to the noise
power spectrum through the discrete form of Parseval’s
theorem:

Timing Jitter

(10)

where S[k] is a noise power spectrum and N is the num-
ber of measurements. Since the return time samples are
independent and identically distributed S[k| is frequency-
independent (white noise). The time domain variance is
influenced by the temporal spread of the timing measure-
ment, which follows a Gaussian distribution, as well as
quantization effects from the time to digital conversion, and
background photons [27]. The temporal spread termed the
instrument response function (IRF), contributes a variance
of 0'% due to laser, SPAD, and TDC timing jitter. The
measurement precision, 0, improves as more signal photons,
p, are collected following: 0® = % /p. With a TDC bin size
of, a, the quantization noise, given by a2/ 12, is similarly
reduced by the number of photons collected. The combined
precision, accounting for both timing jitter and quantization

is
1 a? o2
2 _ - 2 ) = s
0_p<gl+l2) p

where the subscript s denotes the noise in a single measure-
ment. To simplify the analysis, we set the number of detected
photons, p, equal to the number of laser pulses, N in equation
10 leading to the relationship o> = S[k]. Later, in Sec. 5.2, we
expand the analysis to account for pulses that do not detect a
photon. The variance of the real and imaginary components
of the FFT are independent, each have a variance of o2 /N.

(11)



The magnitude of the DFT is then Rayleigh distributed with
an expected value of

2
Tog

N

E(Y[K) = (12)
where this result assumes the normalization factor of 2/N¥
used in (1). Fig. 4 verifies this relationship between the
noise floor of the DFT and the variance of instrument
timing described by (12). The agreement between simulation
and the theoretical expression informs design and sensor
configuration. Using realistic but aggressive instrument
parameters guided by state-of-the-art sensors (see the table
in Suppl. Sec. S2), we predict that oscillation amplitudes as
small as 5 ym can be detected with a signal-to-noise ratio
(SNR) of at least 1 using ToF spectrum analysis.
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Fig. 4. Simulated noise floor set by the instrument response function.
The total acquisition time is 100 ms with Ts = 100 ns for 10° laser pulses.
The average noise calculated from the simulated DFTs from 1 kHz and
beyond is 0.53 um, 5.3 um, and 53 um for instrument response function
standard deviations of o; = 2 ps, 20 ps, and 200 ps, respectively. The
IRF noise is converted to equivalent depths in the legend.

5.1.2 Background Photons

Background photons degrade ToF spectrum analysis in two
primary ways: they increase the measurement variance and
attenuate spectral amplitudes through pile-up. To model the
impact of background photons, we assume background pho-
ton arrival times are uniformly distributed over a window
of [ty ty], with variance 0 = (tg — t1,)?/12. The observed
composite timestamp distribution is modeled as a mixture of
signal and background photons, with average arrival number
per pulse as ps and p, = A\p(tg — t1.), respectively, where X,
is the background arrival rate. Signal photon arrival times
are assumed to follow a Gaussian distribution with variance
of 02. The combined variance is then given by the law of
total variance as [28]

o = ﬁbal? + ﬁsag + pvps(ps — Nb)Qa (13)
where p, and py are the normalized background and signal
average arrival number so that ps + p, = 1; s is the mean
of the signal timestamps; and u, = (¢t — t1,)/2 is the mean
arrival time of the background.

6

Background photons also attenuate the signal when
they arrive earlier in the laser cycle. This pile-up effect is
quantified using a survival model of

o= pse_)‘b(tH_tL)/2 = pse_p”/2 (14)

where p; is the reduced average signal per laser pulse,
assuming the signal is centered in the timing window. Fig. 5
verifies (14) using Monte Carlo simulations that generate
signal and background photons (described in Sec. 6.1) and a
DFT transform of the composite result; the impact of pileup
is also observed in simulations using XA probing in Table 2.
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Fig. 5. Simulated normalized spectral magnitude ('Sim.) versus the aver-
age background arrival rate with the analytical survival model (e—*%/2)
overlaid. At the highest background arrival rates the considerable noise
in the DFT makes the amplitude extraction unreliable.

The challenges to ToF spectrum analysis from background
photons emphasize the importance of reducing background
rate, minimizing the span of the timing window, and cen-
tering the timing window on the average signal return time.
Direct ToF sensors have incorporated some of the required
capabilities including methods to shift and/or zoom a time
gate which reduce the impact of background photons and
efficiently utilize limited histogram bins [1], [29], [30].

5.2 Missed Pulses

Some laser pulses will detect zero returning photons so that
a depth estimate is not generated. If all timestamps could be
read out, methods for frequency analysis of non-uniformly
spaced data, such as the Lomb-Scargle method, could be used
[31], [32], [33]. However, since readout bandwidth constraints
require in-pixel accumulation, alternative approaches are
needed. When a laser pulse does not produce a timestamp,
not accumulating into a memory element is equivalent to
measuring a depth of zero (§[n] = 0) which injects significant
high frequency content into the measured spectrum due to
artificial step changes. This section presents a lightweight
method to fill in this missing data—a step important for both
full-precision DFT and one-bit probing— and evaluates the
impact on the noise floor and signal bandwidth.

To limit artifacts from zeros we replace missed measure-
ments with the most recent valid depth measurement:

If §[n] = @, then d[n] « d[n — 1].

This approach effectively implements a zero-order-hold
(ZOH) circuit with a hold time that varies with the stochastic
photon arrivals. The magnitude of the transfer function

of a ZOH with a hold time of T}, is |H(f)| = smﬁ}ri;{h)



which, when analyzed numerically, is found to have a 3dB
bandwidth of f3gp = O 44 This method is termed nearest
neighbor (NN) 1mputat10n and can be extended so that the
substituted value is an average of k prior values (kNN) [34].
Last valid replacement approach requires the sequence to
be initialized with a valid depth measurement which may
be captured by a brief priming sequence before beginning
spectrum capture.
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Fig. 6. Impact of the pulse detection rate (ps) on the noise floor and
the bandwidth using the last valid depth hold algorithm. The signal was
generated with a repetition rate of s = 100 ns, and a total acquisition
time of 1s with a timing jitter of oy = 100ps = 15mm. The 3dB
bandwidth is indicated for each curve as a s%. The spectrum is smoothed
using a Savitzky-Golay filter to ease viewing.

Fig. 6 evaluates the frequency response and noise floor
when the INN algorithm is applied to return times with
jitter and randomly generated missed detections, for varying
average signal rates. From simulations, the 3dB bandwidth
is 168.4, 15.8, and 1.69 kHz for rates ps = 0.1,0.01, and
0.001, respectively which shows that with only 1% of laser
pulses returning a photon the measurement bandwidth
remains above 15kHz. The expected run-length of missed
pulses is a Bernoulli process with a success probability of p,
and follows a geometric distribution with mean 1/p; and
standard deviation /1 — p,/ps; which approaches 1/, for
ps < 1. The run-length distribution allows us to empirically
approximate the effective hold time of the 1NN algorithm as
(2/ps + 1)Ts which corresponds to one standard deviation
above the mean of the expected run-length of missed pulses.
The DFT noise floor is also degraded by a lower signal
rate due to fewer detections, increasing proportionally to
V/1/ps. Additional modest impacts to the DFT noise floor
from the 1NN frequency response and a windowing function
are discussed alongside simulations in Sec. 6.2. Importantly,
if the measured signal frequency is within the bandwidth of
the last valid replacement algorithm, the spectral amplitude
can still be correctly quantified despite missed pulses.

5.3 Signal Pre-Filter

Sigma-delta modulation shapes quantization noise toward
high frequencies, leaving the signal band relatively noise
free. However, timing jitter in the depth estimates introduces
broadband noise that overlaps with the rising noise spectrum
of the XA modulator (see Fig. 2(c)). To limit excess noise, the
depth signal must be low-pass filtered before accumulation
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into spectrum memory. We implement a lightweight first-
order recursive filter:

z[n] = (1 — a)z[n — 1] + ad[n — 1]

where the smoothing parameter « sets the filter bandwidth
and the filter output x is the input to the spectrum analysis
algorithm. In our design, the modulator operates at a
sampling frequency of fs = 10 MHz with an oversampling
ratio (OSR) of 32, which targets a signal bandwidth of
fs)p0sr = 156 kHz. We chose a smoothing parameter for
efficient implementation using bit-shifts as o = 1/25. This
creates a filter bandwidth of

—fslna
fip =2
which is selected conservatively to highly attenuate the
quantization noise. Without this pre-filter, the simulated
integrated noise using £A probing was around 3.4x that
of the full-precision DFT (see Suppl. Fig. S1.1). A signal pre-
filter is required when probing waveforms are created by
YA modulation but would not be needed if a full precision
DFT is calculated.

= 50.5 kHz.

5.4 Windowing and Frequency Resolution

The discrete Fourier transform (DFT) of a finite-duration
sinusoid at frequency fy produces energy at other frequencies
due to spectral leakage from the implicit rectangular window.
To reduce leakage, standard window functions can be applied
[35], and importantly, these can be integrated into the full-
resolution Fourier basis prior to one-bit modulation, making
the one-bit XA probing method compatible with standard
windowing. We employ a Blackman window for both A
probing and full-resolution DFTs in subsequent simulations
and experiments. The window impacts the noise floor of (12)
[35]; this degradation is quantified in Sec. 6.2.

The DFT frequency resolution is set by the total number
of samples N as Af = f;/N, and is influenced by the
window choice. The appropriate resolution depends on the
motion bandwidth of the scene (e.g., narrowband versus
broadband) and the in-pixel memory capacity. When memory
constraints limit the number of frequency bins, it may be
desired to intentionally increase A f by reducing N. Bartlett’s
method enables shorter acquisitions with coarser frequency
resolution while averaging the resulting periodograms to
recover the noise floor [36]. In our implementation, this
corresponds to reading out multiple short frames and
averaging the squared magnitudes of the spectra to produce
a low-noise estimate at reduced frequency resolution.

6 SIMULATION EXPERIMENTS
6.1 Simulation Methods

Oscillating depth signals are generated and then degraded
by 1) adding Gaussian distributed timing jitter, 2) drop-
ping timestamps randomly to match the signal rate (p,),
3) generating background timestamps uniformly within the
zoom window, and, 4) for each laser pulse, keeping the first
timestamp and discarding any subsequent measurements.
All Fourier analysis is truncated to 20kHz due to compu-
tation time limits associated with creating the XA probing
waveforms. Nearest neighbor imputation is used (1NN) to



fill pulses without a detection before spectral and wavelet
analysis. To reduce spectral leakage, both the DFT and ¥ A
analysis use a Blackman window (coherent gain of 0.42) and
the resulting magnitudes are normalized by the window
gain. The ¥A modulated probing waveforms are generated
using the Python deltasigma package [37] with a modulator of
order 3 and oversampling ratio of 32. Suppl. Sec. 52 includes
a table and discussion of performance specifications of recent
ToF sensors that we used to guide simulation parameters.

6.2 Simulation Results

Fig. 7 compares the noise floor of a DFT spectrum and a two-
level YA modulation with modest ToF sensor jitter (o5 =
3.0mm). The DFT result (average noise of 2.5 um) closely
follows the analytical expression of (12) after scaling the
number of signal counts N by the Blackman window (w[n])
coherent gain (G = % >~ wln]) and a noise power factor (o =
% S wn]?) as Nesp = N%2 [35]. This correction factor for
the Blackman window is G* /o = 0.578. Simulations show an
average noise value equivalent to 2.25 ym and calculations
predict 2.21 pm.
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Fig. 7. The noise floor of a spectrum derived from a DFT and two-level
3 A probing. In this simulation ToF sensor jitter was o; = 3.0 mm with a
count rate of ps = 1 no background photons, an integration time of 1s,
and a pre-filter smoothing parameter o = 1/25. For ease of viewing the
spectrum is smoothed with a Savitzky-Golay filter (length of 13, 3rd order
polynomial).

Table 2 summarizes results of Monte Carlo simulations
and is segmented into experiments that test dependence on
specific parameters. The first four rows assess the noise floor
versus the instrument time jitter with a stationary object
(A = 0). Probing using 1-bit XA waveforms demonstrates a
minimal increase in the noise floor using the recursive low-
pass pre-filter described in Sec. 5.3. Eq. (12) (with window
correction) is verified and demonstrates that an oscillation
amplitude of ~ 5.5 um is detectable with an instrument
timing jitter of 50 ps and 10° laser pulses. The second section
of Table 2 demonstrates accurate measurement of single tone
depth oscillations at 4.5 kHz — amplitudes at or above 30 ym
are measured with less than 3% error and do not increase
the noise floor. The third section shows how the signal rate
impacts the noise floor and amplitude measurement. The

noise floor empirically increases by C' pi since fewer signal
photons are measured. The additional factor C, due to the
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frequency response of nearest neighbor imputation, plateaus
to a maximum of v/2 for low signal counts. As expected the
data imputation preserves the signal amplitude, even at a
count rate of 3%. The final section of Table 2 assesses the
impact of background photons. The SNR modestly degrades
until p, = p = 0.3 at which point pile-up diminishes the
signal photons and reduces the extracted amplitude.

Fig. 8 demonstrates the frequency spectrum of a depth
signal oscillating at 4.5 kHz with an amplitude of 0.1 mm
and shows accurate extraction of the signal magnitude. We
recognize the absurdity of this acceleration, Aw? =~ 8150g!,
but chose these parameters to exercise the high frequency
capabilities and verify a minimal impact on the noise floor
from a large signal. Fig. 9 shows XA probing results for the
same frequency and amplitude as the signal rate is changed.
The 1NN missing pulse fill-in algorithm maintains the signal
amplitude (see inset) while the noise floor of the spectrum is
increased.
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Fig. 8. Simulation of the frequency spectrum of a 0.1 mm amplitude depth
signal oscillating at 4.5 kHz measured by probing with both the reference
DFT and XA waveforms. The laser pulse repetition rate is fs = 10 MHz,
with a signal rate of ps = 1, a 1-second acquisition time, and a noise of
o; = 7.5mm. The inset spans + 15 Hz around the signal frequency and
shows that both methods accurately measure the magnitude.

7 LABORATORY EXPERIMENTS
7.1 Methods

We evaluated the spectral analysis methods experimentally
using a picosecond pulsed laser at 660 nm (LDH-P-C-660),
operated at a repetition rate of 10 MHz; a single-pixel SPAD
detector with a diameter of 50 pum (Micro Photon Devices),
paired with a 660 4= 10 nm bandpass filter (Thorlabs FBH660-
10); and a time-correlated single-photon counter (TCSPC,
PicoQuant PicoHarp 300), operated in time-tagged mode
to individually record each photon event. The TCSPC bin
width was set to 4ps, and the total system RMS timing
jitter was measured to be 130 ps. The laser intensity was
adjusted to vary the count rate reported by the TCPSC which
combines both signal and background photons. Experiments
were run at low background rates, around 1.5 x 102 cps
or less. Dynamic depth scenes were generated using 3D-
printed depth-feature disks attached to an optical chopper
(Thorlabs, MC2000B) (see Fig. 10) and by scanning the laser
beam across a discrete step in object depth. The measured



Configuration || Noise [pm] A meas. [pum] SNR [dB]

os [mm] ps  pp folHz] A[um] || DFT  SA | DFT XA | DFT %A
3.0 1 0 - 0 2.25 2.26 7.13 7.24 - -

7.5 1 0 - 0 5.47 5.49 21.84 21.81 - -
15.0 1 0 - 0 10.85 10.88 | 31.83 31.91 - -
30.0 1 0 - 0 2224 2232 | 68.52 70.40 - -

3.0 1 0 4500 10 2.26 2.27 8.27 8.25 10.24  10.20
3.0 1 0 4500 30 2.23 2.23 30.49 30.45 21.69 21.66
3.0 1 0 4500 100 2.19 2.19 97.65 97.67 31.89 31.87
3.0 1 0 4500 300 2.23 2.23 298.34 298.30 | 41.47 41.46
75 1 0 4500 100 5.52 5.54 102.30  102.63 | 2429 2429
7.5 030 0 4500 100 13.11  13.12 | 102.22 102.60 | 16.80 16.83
7.5 010 O 4500 100 23.57 2357 | 11476 114.82 | 12.71 1271
7.5 0.03 0 4500 100 4442 4442 | 131.34 131.34 | 8.37 8.37
7.5 0.30 0.010 4500 100 1395 1395 | 99.63 99.60 1598 15.98
7.5 0.30 0.025 4500 100 1459 1459 | 95.71 95.31 1526  15.22
7.5 0.30 0.050 4500 100 1529 1529 | 92.61 92.66 14.57 1457
7.5 0.30 0.075 4500 100 16.12 16.12 | 88.75 88.47 13.77 13.74
7.5 0.30 0.100 4500 100 16.33 16.34 | 98.31 98.18 1456 1454
7.5 0.30 0.300 4500 100 1693 1693 | 55.14 54.66 9.17 9.09

TABLE 2

Monte Carlo simulations that configure the sensor noise (o), the signal rate (ps), the background rate (py), the injected signal frequency (fo), and
amplitude (A). The total acquisition time is 1 s with a laser pulse frequency of fs = 10 MHz. Results are shown from both DFT processing and
two-level XA frequency probing. Noise is calculated as the mean of the amplitude magnitude spectrum away from the signal frequency, the
measured amplitude (A meas.) is found from a 3-point quadratic interpolation of the largest value in the spectrum, and the SNR is calculated as
201log, (A meas./Noise). Horizontal lines divide experiments that assess the impact as different configurations are varied, from top: instrument noise,
signal amplitude, signal rate, and background rate.
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Fig. 9. Simulation of the frequency spectrum of a 0.1 mm amplitude
depth signal oscillating at 4.5 kHz a with three values of signal rates (ps)
measured by XA probing over a 1-second acquisition with instrument
timing jitter of oy = 7.5 mm. The full frequency span of the spectrum
shows the noise floor increase with decreasing signal rate. The inset,
centered around 4.5 kHz, demonstrates accurate peak magnitude for all
three signal rates.

time-stamp sequence was pre-processed using time-window
zooming, INN missing pulse fill-in, the recursive pre-filter
with a smoothing parameter of a = 1/25, and is finally
transformed to a frequency spectrum using the proposed XA
probing waveforms.

7.2 Experiment Results
7.2.1 Experimental Spectrum Analysis

To assess the accurate extraction of high-frequency depth
oscillations we measured the ToF from a depth square wave
of 2.5 mm amplitude with a frequency of 900 Hz. This was
created using a depth feature disk with 9 periods rotated at

100 Hz. Fig. 10 shows the amplitude spectrum obtained after
processing the experimental timestamps with depth zooming,
INN imputation, and a 50 kHz pre-filter, followed by spectral
extraction using XA probing waveforms. The experimental
spectrum accurately locates the frequencies of the primary
components. However, the finite laser spot size occasionally
causes measurements to originate from either the peak or
valley of the depth profile, softening the apparent step edges
and reducing the energy of high-frequency harmonics. This
attenuation is visible in Fig. 10, where the predicted harmonic
amplitudes exceed the experimental measurement. This
experiment shows that the proposed ToF spectrum resolves
a frequency component at 6.3kHz with an amplitude of
270 pm. The noise floor from 1 kHz - 2 kHz averages 46 ym
which is consistent with (12) when corrected for the window
and the signal rate.

To evaluate a more complex frequency response, a
pseudo-random depth pattern disk was printed and attached
to the chopper. Fig. 11 shows an image of this disk (upper
left) and a single cycle of the repeating depth pattern as a
function of time (upper left) when spinning at 100 Hz. The
experimentally measured spectrum ("Expt.”) is compared to
the DFT of the designed disk pattern (‘Disk’) and shows en-
couraging concordance. These measurements were captured
with a count rate of 39.4%. Results at a lower count rate
are provided in Suppl. Fig. 51.2, which shows the expected
increase in the noise floor while still resolving the high-
magnitude frequency components.

7.2.2 Experimental Wavelet Analysis

Non-oscillatory motions may be detected and localized using
the Haar wavelet analysis described in Sec. 4. To investigate
this, we scanned the laser spot across a 25 mm depth step (see
Suppl. Fig. 51.3) using a galvanometer with a small-angle
step response of 400 s (Thorlabs, GVS012). The resulting
normalized wavelet coefficients are shown as a scalogram in
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Fig. 10. The depth spectrum of a depth square wave (900 Hz with A =
2.5 mm) captured for 1 second. The odd harmonics of the fundamental
frequency of fo = 900 Hz are annotated. The system clearly resolves
the 7th harmonic at 6300 Hz. In the upper right, the depth feature disk
is shown stationary and while spinning as captured by a slo-mo video
(240 fps). The TCSPC count rate was 28.3%.
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Fig. 11. The depth spectrum of a pseudo-random depth pattern shown
in the inset captured for 1 second with a count rate of 39.4%. 'Expt.’ is
the experimentally measured spectrum and 'Disk’ is the DFT of the disk
design repeated for 100 cycles.

Fig. 12 (bottom). The scalogram localizes the depth transient
in time and provides an estimate of its duration based on
the scale of the maximum coefficient. The ramp rate of the
transient can also be estimated as 4w, ,/(T/2*) where
T/2%" is the extent of the wavelet and «/,v" denote the
scale and time shift of the maximum coefficient (see Suppl.
Sec. S5 for a derivation). This yields an estimate of 27.7m/s,
which roughly matches the velocity anticipated from the
scene and the galvanometer step response. On-chip wavelet
compression may be advantageous over full-frame readout
when the latter cannot keep pace with the scene motion. The
conventional histogram and an extended sequence (5 second
duration) for this configuration are shown in Suppl. Figs. S1.5
and S1.4.

8 DiIsSCUSSION

On-sensor feasibility, memory requirements, and com-
pression ratios. To assess the practicality of on-sensor
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Fig. 12. The ToF laser spot is quickly moved across a depth discontinuity
of 25 mm to create a transient depth-edge due to object or camera motion.
(top) Measured time stamps (for viewing only 1 of every 128 are shown)
() and a length 100 moving average (--=). (bottom) The scalogram
generated from 127 discrete wavelet coefficients computed with the
proposed on-chip compatible Haar wavelet transform. The transient
decrease in depth is revealed most prominently at a scale of 2° (feature
duration of 50 ms/2° = 1.5ms) and is localized in time (~0.032s). Note
that the Haar wavelets are defined such that a transient decrease in depth
produces a positive wavelet coefficient. This on-chip discrete wavelet
transform requires the readout of 127 coefficients as compared to the
500,000 total time stamps (reduction of x3937).

implementation, we hand-coded the pixel processing al-
gorithms in Verilog and synthesized the design using the
SkyWater 130 nm CMOS library to evaluate area utilization.
By scaling the area usage from the 130 nm CMOS to a modern
40 nm CMOS process we estimate that 6 and 13 frequency
measurements could be supported in a 30 pmx 30 pm and
40 pm x40 pm footprint, respectively, see Suppl. Sec. S3 for
details. Analysis of the maximum clock frequency suggests
that the adder and other logic can be shared among at least 16
frequency bins with a laser pulse rate of 10 MHz, see Suppl.
Sec. S3.3. In-pixel construction of a frequency spectrum
reduces output bandwidth in comparison to reading out
individual timestamps, provided that frequency bins are
selected judiciously. The required I/Q memory depth can be
estimated from (7), based on the number of laser pulses N,
the maximum motion amplitude |Y |42, and the resolution
of the TDC. The maximum anticipated value stored per
memory element is Y7/q = |Y|mae (%) For example, to
capture motion up to 10mm with a TDC resolution of
6.67 ps (equivalent to 1 mm depth resolution) using a 10 MHz
laser pulse rate over a 1-second interval, a 26-bit memory
is required for each of I and Q at a given frequency bin.
Notably, the data readout scales as log,(NN) for in-pixel
frequency spectra, compared to N for full timestamp readout.
For a spectrum of 128 frequency bins, the total readout
is 832 bytes per pixel, versus 17.5 MB/pixel for reading
all 14-bit timestamps — yielding a compression factor of
approximately 22400x.

Noise improvements: The one-photon per laser pulse
may be relaxed by using multiple SPADs to view the same
object point, similar to “superpixel” depth sensor architec-
tures where multiple SPADs share processing logic. In this
superpixel configuration, individual depth measurements
can be averaged per pulse before updating the spectral anal-



ysis memories to reduce the effective timing jitter. Similarly,
post-readout averaging of spectra from superpixels observing
the same surface region could further reduce noise.

Comparison with Laser Doppler Vibrometers. Laser
Doppler Vibrometers (LDVs) are exceptionally sensitive in-
struments that measure in-plane vibration (or velocity) with
sub-nanometer displacement sensitivity at a single point [5].
Because LDVs rely on interferometric detection of Doppler
shifts, they require coherent lasers and, conventionally, free-
space optics [38], making LDVs bulky, power-hungry, and
sensitive to alignment. Multi-point LDV sensing typically
uses mechanical scanning and/or duplicated photodetectors
and processing electronics which limits speed and scaling. In
contrast, our method may enable simultaneous motion analy-
sis at multi-kHz rates across an array with <10 pum sensitivity,
using a miniature 20 milligram-scale SPAD-ToF sensor. This
capability is well suited for embedded applications such as
monitoring the motion of a microdrone or soft robot motion
sensing [39], biomechanics and body tracking [40] or human-
device interaction [41], [42], and robot touch and grasping
[39], [43], where displacement amplitudes are relatively large
and spatial mapping is required. In these scenarios, the
combination of high probing rate, per-pixel parallel capture,
and low size, weight, and power (SWaP) offers advantages
in form factor and scalability over traditional LDV systems.
We acknowledge active research efforts to miniaturize LDVs
using photonic integrated circuits and extend LDV systems
to multi-point or array-based architectures [38], [44]. These
developments, alongside our work on ToF-based frequency
sensing, represent complementary approaches toward em-
bedded, high-resolution motion sensing systems suitable for
resource-constrained platforms.

More advanced imputation for low-SNR operation. This
work uses a zero-order-hold (INN) to approximate missing
depth measurements, which enables simple hardware im-
plementation and performs well at moderate signal rates.
However, as signal rates decrease or scene dynamics become
more complex, the assumption of constant depth between
valid measurements becomes increasingly limiting. Future
work could explore more advanced imputation methods,
such as a motion model and a Kalman filter to estimate
missing data. In our experiments, INN imputation did not
significantly impact spectral accuracy, suggesting that any
improvement from more sophisticated methods must be care-
fully balanced against their hardware and implementation
costs.
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