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Abstract. Single-photon cameras (SPCs) are emerging as sensors of
choice for various challenging imaging applications. One class of SPCs
based on the single-photon avalanche diode (SPAD) detects individual
photons using an avalanche process; the raw photon data can then be pro-
cessed to extract scene information under extremely low light, high dy-
namic range, and rapid motion. Yet, single-photon sensitivity in SPADs
comes at a cost — each photon detection consumes more energy than
that of a CMOS camera. This avalanche power significantly limits sensor
resolution and could restrict widespread adoption of SPAD-based SPCs.
We propose a computational-imaging approach called photon inhibition
to address this challenge. Photon inhibition strategically allocates detec-
tions in space and time based on downstream inference task goals and
resource constraints. We develop lightweight, on-sensor computational
inhibition policies that use past photon data to disable SPAD pixels in
real-time, to select the most informative future photons. As case stud-
ies, we design policies tailored for image reconstruction and edge de-
tection, and demonstrate, both via simulations and real SPC captured
data, considerable reduction in photon detections (over 90% of photons)
while maintaining task performance metrics. Our work raises the ques-
tion of “which photons should be detected?”, and paves the way for future
energy-efficient single-photon imaging. Source code for our experiments
is available at https://wisionlab.com/project/inhibition.
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1 Introduction

From vacuum tube-based single-photon detectors invented in the early 20th cen-
tury [28], to 3D depth sensing LiDAR cameras found in today’s smartphones [31],
single-photon camera (SPC) technology has come a long way in terms of pixel
resolution and commercial availability for a variety of applications. Thanks to
CMOS-compatible single-photon avalanche diode (SPAD) arrays, SPCs are being
increasingly used not only in niche fields such as scientific imaging and biomedical
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Fig. 1: Photon inhibition for resource-efficient passive SPAD imaging. (a)
Unlike conventional CMOS cameras (CIS), the energy consumption in SPAD cameras
increases with scene brightness, severely limiting the applicability of high resolution
SPAD cameras in resource-constrained applications. (b) We expand the conventional
imaging pipeline to incorporate “inhibition” that electronically enables or disables in-
dividual pixels to limit bandwidth and power consumption. Our method relies on
lightweight mathematical operations called “inhibition policies” that update the in-
hibition patterns based on the history of photon detections. Inhibition policies can
be optimized for image SNR or for downstream vision tasks.(c,d) Object detection, a
high-level vision task, is successful even with a large fraction of photons inhibited.

microscopy [54], but more widely for consumer photography [40]. SPAD-based
SPCs have recently been fabricated into kilo-to-megapixel format arrays that are
now commercially available [31,40]. The extreme sensitivity and high speed can
benefit passive low-light computer vision tasks, particularly in the presence of
rapid scene or camera motion [38], enable wide dynamic-range imaging [15, 34]
and photon-starved active imaging applications such as 3D imaging (LiDAR) [24]
and fluorescence microscopy [54].

SPAD camera pixels detect individual photons with extremely high frame
rates by exploiting avalanche multiplication. On one hand, being able to detect
individual photons opens up new possibilities and capabilities for computer vi-
sion systems. On the other hand, this also presents a unique challenge: Every
photon-induced avalanche comes with a non-negligible energy cost, which is a
challenge exclusive to SPAD-based cameras. This flux-dependent photon detec-
tion power is a significant fraction of total power consumption in today’s SPAD
cameras and impedes further increases in their spatial resolution [27,40,44,45,51].
For example, extrapolating the avalanche power of a recent SPAD sensor [51]
to ∼10’s of megapixels format predicts a power consumption of several watts in
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bright light4 (as illustrated in Fig. 1(a)), far exceeding the power consumption
of modern CMOS image sensors (CIS) of around 300mW [49].

We address this problem by being selective about which photons are detected
on the SPAD sensor while maintaining good performance on various computer
vision tasks. To reduce avalanche power consumption and decouple it from pho-
ton flux, we propose a computational imaging technique called photon inhibition
where individual SPAD pixels are disabled adaptively based on previous photon
detections in their spatio-temporal neighborhoods. Electrically disabling pixels
prevents photon detections to inhibit any avalanche power or subsequent process-
ing. We implement lightweight on-sensor computations called inhibition policies
(Fig. 1(b)) to determine, in real-time and at single-pixel and single-frame granu-
larity, which SPAD pixels to enable or disable. Our method is inspired by retinal
pre-processing of the human visual system where retinal neurons aggregate pho-
ton information over small spatio-temporal neighborhoods to cause neighboring
retinal cells to become less sensitive to incident light [13,17].5

Given that SPADs introduce a new challenge of flux-dependent power con-
sumption, we establish, from first principles, novel energy-aware imaging perfor-
mance metrics for resource-constrained single-photon imaging. Based on these
metrics, we design families of inhibition policies that distribute photon detections
in space and time based on imaging / vision task goals and energy consumption
constraints. A critical consideration in the design of inhibition policies stems
from the observation that these policies are meant to control (enable / disable)
the sensor (Fig. 1(b)). Therefore, it is essential for these policies to be extremely
lightweight since these need to be implemented on sensor with very limited com-
pute and memory resources. Furthermore, inhibition policies must execute at
ultra-low latency to keep up with high-speed photon detections (reaching up
to 100 kHz.). Fortunately, since the raw data output from a SPAD-based SPC
consists of binary-valued image frames, SPCs are naturally suited to real-time
calculations at the image sensor plane under tight compute and memory budgets.
The proposed inhibition policies are lightweight, requiring only simple arithmetic
and Boolean operations computed over local spatio-temporal neighborhoods, and
thus amenable to in-pixel implementation [2, 8].

In simulations and real experimental data, we show that our inhibition poli-
cies allocate photon detections to sensor pixels in a way that reduces detection
energy for a given accuracy level of various vision tasks. Our results show con-
sequential energy savings when compared to a conventional capture scheme for
tasks of (i) image reconstruction: 42% fewer photon detections at equal image
quality; (ii) edge detection: an edge sensitive inhibition policy reduces detections
by 30% at equal F-score; and (iii) YOLOv8 object detection: remains success-

4 It has been shown, perhaps counter-intuitively, that SPADs do not saturate even
under extremely bright conditions [29, 30]. Therefore, SPADs are not restricted to
low-flux environments, but are being considered for vision applications across a wide
dynamic range of lighting conditions (e.g., from a dark tunnel to bright sunlight).

5 We borrow the term “inhibition” from the phenomenon of “lateral inhibition” found
in biological vision systems [3].
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ful with 95% of photons inhibited under camera motion of a real-world SPC
(Fig. 1(c,d)). Through experiments with photon streams captured using real
SPAD camera hardware over a wide range of illumination conditions, we show
that our proposed inhibition policies preserve low-light details and, in bright-
light, decouple flux and detection energy.
Scope and Limitations: There are several competing image sensor technolo-
gies today that resolve single-photons while capturing binary-valued raw frames
at rates exceeding thousands of frames/second. SPCs based on “jots” [35] that
do not rely on avalanche multiplication do not suffer from flux-dependent power
consumption as SPADs. Jots are an exciting technology, especially in scenarios
that require high resolution and high dynamic range imaging [36]. In this pa-
per, we focus on SPADs, due to their rapidly rising availability and commercial
interest [7, 31], and benefits over conventional CMOS sensors, both in low-light
and bright scenes for a variety of computer vision tasks [11,38].

Our goals in this paper are to (a) raise the question of “which photons should
be detected?” in the context of energy-efficient single-photon imaging, (b) es-
tablish a design space and metrics to evaluate various inhibition policies, and
(c) propose plausible policies that respect practical hardware limitations for fu-
ture on-chip implementation. We emphasize that the inhibition policies proposed
in this paper are not necessarily optimal. This work is just a first step towards
demonstrating that it is possible to achieve high performance with SPADs, while
maintaining low power consumption via photon inhibition.

2 Related Work

Hardware approaches for reduced energy consumption: There is a strong
dependence of SPAD power consumption on the pixel size — the smaller the
pixel, the lower the avalanche energy [42]. Although recent developments in
SPAD pixel technology have reduced pixel sizes to below 4 µm [43], avalanche
energy still contributes a large fraction of the total power consumption in a SPAD
sensor [48]. SPAD design optimizations have reduced the charge per avalanche
by RF modulation of the bias voltage [57], minimization of the junction capac-
itance [45], and smart [6] and fast [59] quenching circuits. Circuit architectures
may require spatial and/or temporal co-incidence [25] to reduce energy down-
stream in the processing chain, but avalanche energy remains. Our work com-
plements existing hardware approaches by preventing avalanches altogether to
reduce illumination-dependent energy consumption.
SPAD dead-time and clocked recharge: SPADs require recharge after an
avalanche-inducing photon detection during which subsequent photons are not
recorded. This dead-time inhibits photons at high exposure [27, 30], yet, power
consumption remains excessive when the average inter-photon arrival interval is
shorter than the SPAD dead time [41, 45]. Power consumption at high photon
flux can be reduced by controlling the global rate of SPAD recharge (“clocked
recharge”) [41,51]. Within a single recharge period a SPAD detects at most a sin-
gle photon; subsequent photon arrivals do not induce an avalanche, thus power is
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reduced. To further limit avalanches, clocked recharge has been combined with a
limit on the number of detections and time to saturation circuitry to measure the
intensity of the saturated pixels [44], coarse pixel-wise exposure control [45], and
a sequence of recharge periods similar to exposure bracketing [51]. These meth-
ods could be considered special cases of inhibition policies that are global and
do not adapt to scene content, and therefore, are limited in flexibility to trade
power and measurement fidelity. Consequently, in these methods, the power of
avalanches remains a considerable fraction of total SPAD sensor power consump-
tion [51]. For example, in this work we show considerable power savings, reaching
up to 90%, for an object detection task.
Resource-aware imaging: Event-based vision sensors reduce power consump-
tion by only transmitting scene information when an intensity change is de-
tected [19]. This idea has recently been applied to SPAD arrays to reduce power
consumption due to data transfer [12, 50]. In contrast, our method reduces
power due to detection by selectively disabling photodiodes based on photon
history over small spatial and temporal neighborhoods. Miniaturized cameras
with constraints on compute energy have transferred processing to the optical
domain [33]. While we focus on passive imaging, depth sensing with SPADs and
an active pulsed light source has related constraints such as acquisition time and
laser power. Adaptive gating reduces acquisition time [46] and optimal allocation
of the laser dwell time among pixels improves data quality [39,53].

3 Observation Model

During an exposure time T , a photon flux of ϕ results in an average number
of photon conversions, or exposure, of H = ϕT (we fold the sensor’s photon
detection probability, or PDP, into the definition of ϕ, meaning it represents an
effective flux). The distribution of photon conversions, K, follows the Poisson
distribution given by P(K = k;H) = Hke−H

k! . During each binary exposure
period, a SPAD pixel records a ‘1’ if at least one photon was incident during
that period, and ‘0’ otherwise. The probability of detecting at least one photon
is given by Y := 1 − P(K = 0;H) = 1 − e−H . Hence, the SPAD pixel readout
in each binary frame is a Bernoulli random variable B ∼ Bernoulli(Y ). Multiple
exposure time windows, or measurements (W ), are recorded to reduce noise with
the total number of detections

D :=

[
W∑
n=1

Bn

]
∼ Binomial(W, 1− e−H). (1)

We estimate the probability of detection and flux from a measurement D as

Ŷ =
D

W
(2)

Ĥ = − ln(1− Ŷ ). (3)
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Changes under inhibition: Inhibition is represented by a binary state vari-
able M at every pixel, with Mn = 1 denoting enabled for the n-th measurement
period. M is a random variable when an adaptive or data-dependent inhibi-
tion policy is used. The total number of measurements changes to Winh. :=∑W

n=1 Mn ≤ W . The number of detections becomes

Dinh. :=

[
W∑
n=1

MnBn

]
=

 W∑
n=1

Mn=1

Bn

 ∼ Binomial(Winh., 1− e−H), (4)

and the flux is estimated similar to Eqs. (2) and (3). The second summation
conveys that, with inhibition, the measurements when the pixel is enabled match
the original model in Eq. (1) – a result of the memoryless property of the Poisson
arrival process. The model above requires that transitions in M are synchronized
with the clock signal used to gate the exposure, so that the PDP is not changed
by inhibition. A second assumption is that the time for SPAD recharge is small
relative to the clock period. This is a desired property for passive SPAD-based
imaging, and holds for many state-of-the-art SPADs [45, 48, 51]. It implies that
PDP is approximately constant in time and does not depend on prior pixel state.

4 Energy-Aware Performance Metrics

The exposure-referred signal-to-noise ratio (SNRH) is commonly used to evalu-
ate single-photon sensor performance, and can be computed as the ratio of the
true exposure H and the root-mean-squared error in the estimated exposure√
E[(Ĥ −H)2] [16, 60]:

SNRH =
H√

E[(Ĥ −H)2]
= H

√
W

eH − 1
. (5)

At low incident flux, SNRH is low due to shot noise. SNRH improves as the
likelihood of a photon detection increases until, in bright light with H > 1.6, the
SNRH degrades due to “soft” saturation of the response [30,37].

We propose two new energy-aware modifications to SNRH to incorporate
SPAD energy costs. First, we propose a detection efficiency metric SNR2

H/D

defined as the square of SNR normalized by the expected number of detections
E[D] = W (1− e−H):

SNR2
H/D :=

SNR2
H

E[D]
=

H2e−H

(1− e−H)2
. (6)

Fig. 3(a) shows the SNRH (black) and the detection efficiency (red) versus the
average photon arrivals per period (H). When H ≪ 1 all detections contribute
significant information and SNR2

H increases linearly, similar to an ideal non-
saturating sensor only limited by Poisson noise. Accordingly, SNR2

H/D ≊ 1, the
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upper bound of this metric. At larger exposure values, beginning around H ≈ 0.5,
the sensor begins to saturate which slows the growth of SNRH and thus degrades
the detection efficiency.

A separate constraint is the total number of recharge periods during which a
pixel is enabled and can measure either ‘0’ or ‘1’. This number of measurements
(W ) may be limited due to the energy to read out a frame, the depth of an
in-pixel counter, and/or the maximum allowable sensing latency due to motion
blur. We establish a second metric, measurement efficiency defined as the square
of SNR normalized by the number of measurement windows:

SNR2
H/W :=

SNR2
H

W
=

H2e−H

1− e−H
. (7)

Fig. 3(a) (blue) shows sub-optimal measurement efficiency at both low and high
exposures with the best efficiency at H = 1.59, Y = 0.80, as demonstrated in [9].

In an oracle setting with a known image, one can analytically derive non-
uniform allocations of measurements Wi across the pixels i, constraining the total
expected detections to a fixed value and optimizing SNRH or mean-squared-error
(see the supplement). The loss metric may also be defined relative to the binary
rate Y instead of H as above. In that case a useful base metric could be entropy
instead of SNRH [22].

5 Spatio-temporal Inhibition Policies

We now propose policies that calculate a spatio-temporal inhibition pattern for
each pixel and each frame based on the history of photon frames and patterns.
Following Sec. 3, we define an inhibition pattern using a binary-valued tensor M ,
where M(i, j, t) = 0 if pixel (i, j) is disabled in the tth frame, and M(i, j, t) = 1
otherwise. All pixels are initially enabled, and on-sensor calculations modify M
over time. The binary photon cube is defined as F (i, j, t) = 1 if the pixel is
enabled (i.e., M(i, j, t) = 1) and a photon is detected at pixel location (i, j) in
the tth frame, otherwise it is zero.

Inhibit
Window

Photons

time

T T T T T T T

S > η
τH

X X X X X X

Fig. 2: Calculation-based inhibition with dead time. Arrows represent photons
with an ’X’ for inhibition. T indicates the clocked recharge period. A score, S, calculated
from past frames determines if future measurements are enabled or disabled.
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(a)

Inhibition Simulations

Fig. 3: Efficiency metrics and inhibition policies that track the metrics: (a)
The SNRH in dB (black), the detection efficiency (red, −−), and the measurement
efficiency (blue, −·−) versus the exposure with W = 100 measurements. The binary
rate Y = 1 − e−H is indicated on the top axis. The vertical dotted line indicates the
exposure and the binary rate at which the SNRH degrades by 3 dB from the peak
SNRH . (b,c) Monte Carlo simulations of binary images using calculation-based inhibi-
tion policies demonstrate how the allocation of measurements versus the pixel exposure
depends upon tuning parameters. (b) the inhibition threshold η adjusts the exposure
level at which pixels are inhibited to allow the measurement fraction (the ratio of ac-
tive measurements to total number of frames) to follow the SNR2

H/D curve in (a). A
smaller threshold more aggressively inhibits photons. (c) demonstrates the impact of
the hold-off time, τH , on the number of measurements allocated to the brightest pixels.
The legend indicates the total fraction of photons inhibited as IF . (b,c) show smoothed
curves (Lowess filter, fraction of 1/5) of the measurement fraction vs. H.

Fig. 1(b) shows the components of a photon inhibition processing layer, in-
cluding the binary frames, F , and inhibition pattern M . For ease of on-sensor
implementation, we focus on policies that operate on small and local spatio-
temporal neighborhoods of fixed sizes. We rely on local arithmetic and Boolean
computations and comparison operations, consistent with current in-pixel com-
putational capabilities [2, 10, 27]. Fig. 2 shows a proposed on-sensor calculation
approach that operates in a streaming fashion as frames accumulate to calcu-
late an inhibition score, S, as the result of a spatio-temporal filter of the binary
frames and inhibition pattern. The score at each pixel is calculated as

S(i, j, t) = K ∗ [(2F (i, j, t)− 1) ·M(i, j, t)] (8)

which applies a spatio-temporal filtering kernel, K, of dimensions L,H, T to a
ternary representation of the pixel result (1, 0, or −1 for a detection, a disabled
pixel, or a measurement that does not detect a photon, respectively). The kernel
K can typically be separated into spatial and temporal components as K =
Ks ⊗ Kt with dimensions L × H × 1 and 1 × 1 × T , respectively. After each
binary frame, the score is compared to a threshold η and the pixel is disabled
for the subsequent τH frames: M(i, j, t′) = 0 for {t′|t + 1 ≤ t′ ≤ t + 1 + τH} if
S(i, j, t) > η. Observe in Fig. 3(b,c) that decreasing η and increasing τH can be
used to attain more aggressive inhibition with a larger fraction of photons being
inhibited. The binary rate of each pixel is estimated (using Eq. (4)) as the ratio of
detections to (active) measurements: Ŷ (i, j, t) =

∑
t′
F (i, j, t′)/

∑
t′
M(i, j, t′). This
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calculation requires a record of the inhibition history which could be accumulated
by an in-pixel counter or recreated in a downstream processor if all binary frames
are read out.

(a)

Inhibit
Window

Photons

time

T1 T1 T1 T2 T2 T2 T3 T3

D1 < d1

X

D2 ≥ d2 =⇒ inhibit next cycle

X X X XX X

clocked recharge (CR) @ 0.01 ms CR brackets

with

inhibition

0.10 ms

with inhibition

combined without
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(b)

(c)

(d)

Fig. 4: Saturation look-ahead inhibition. (a) When detections Di of cycle i exceed
a threshold, di, the photons arriving during the next recharge cycle, i+1, are inhibited.
For this drawing [d1, d2] = [3, 3]. (b, c, d) Example with three recharge period settings
and brackets of Wi = 10 measurements each. The saturation thresholds are set as
[d1, d2] = [7, 7]. The brackets are combined linearly, weighted by SNR2

H [21]. (b, c)
With negligible effect on reconstructed SNR relative to conventional clocked-recharge,
significantly fewer photon detections occur under the inhibition policy in high-flux
settings. (d) The individual brackets are effectively disabled in flux regimes with low
detection efficiency, and the detection rate closely tracks the original SNR2

H curve.
Simulation details are in the supplement.

Example policies: 1) Single-pixel dead time: A spatial kernel Ks of dimensions
1×1 may mimic the dead time of a passive SPAD without influence from neigh-
boring pixels. Unlike SPAD recharge generated dead time, the temporal kernel
may be extended (e.g., N frames long) to establish a rate threshold for inhibi-
tion with reduced quantization noise. 2) Local spatio-temporal averaging : Single
binary frames are inherently noisy. An inhibition policy that calculates spatio-
temporal averages to estimate the local photon rate may reduce the impact of
noise on the inhibition pattern. Another benefit, as shown in Fig. 3(b,c), is that
the stochastic nature of binary frames smooths the distribution of measurements
versus pixel flux. Discontinuities (“dips”) in SNR versus photon flux are unde-
sirable due to the potential for artifacts. 3) Edge enhancement: Pixels may be
inhibited if a local neighborhood has little spatial variation in photon rate. This
can be achieved, for instance, through a spatial filter Ks in Eq. (S20) which acts
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like a Laplacian filter. Such a strategy may enhance the fidelity of edges in the
image while focusing fewer resources on regions with constant illumination.

Fig. 4 presents a second proposed inhibition policy called saturation look-
ahead. This policy combines exposure brackets and calculation-based inhibition
for a light-weight single-pixel inhibition policy. This policy proceeds as a sequence
of cycles (indexed by i) of binary frames where each binary frame within each
cycle uses the same exposure time. Cycle exposure times Ti progressively increase
(T1 < T2 < T3...) so that measurements taken in an earlier cycle may predict
low detection efficiency (near saturation) at longer exposure times and disable
the pixel in these subsequent cycles. The exposure level thresholds for inhibition
would typically be set such that the number of photons detected at a given flux
level tracks the SNR2

H (see Fig. 4(b)), but may be adjusted further based on
the relative importance of power consumption, sensing latency, and SNR in an
actual application setting.

6 Simulation-based Evaluation

We use Monte Carlo simulations to generate sequences of grayscale binary frames
from a dataset of RGB images [1]. The inhibition policies evaluated extend the
baseline inhibition generated by clocked recharge. The inhibition score and pat-
terns for various policies and tuning parameters are calculated from these binary
frame sequences. Once inhibition patterns are determined, performance is eval-
uated by tabulating detections, measurements, and image quality or vision task
performance for each step in the sequence (see the supplement for details).
Spatio-Temporal Policies for Imaging: Handcrafted spatial kernels (3x3)
were combined with an averaging temporal kernel of length 4 to form lightweight
inhibition policies that allocate pixel measurements as described in earlier sec-
tions for improved image reconstruction. Fig. 5 summarizes the simulation re-
sults. Fig. 5(d,e) display reduction in photon detections at equal structural sim-
ilarity index measure (SSIM) [56], enabled by disabling bright pixels, for an
exposure bracketing sequence. Intensity estimates from each bracket are com-
bined using SNR2 weighting [21] and then converted to a binary rate estimate at
the center exposure level of 1 ppp. The proposed policy demonstrates an average
reduction in detections of 42% as compared to no inhibition. Fig. 5(f,g) evaluates
a single exposure level (1.0 ppp) which is a more challenging scenario, yet the
proposed policy still reduces detections by 14% at SSIM=0.7. See supplement
S 3.4 for more examples and S 3.5 for simulations of high dynamic range images.
Edge Detection: The BSDS500 dataset with ground truth boundaries [1] was
used to study energy-efficient edge detection via photon inhibition. Binary rate
images were processed by pre-trained holistically-nested edge detection (HED)
[58] with the resulting edge maps compared to ground truth by the structured
edge detection toolbox [14]. Fig. 6 shows the optimal image scale (OIS) F-score
versus the average detections per pixel. Interpolated curves (not shown) allow for
translating along horizontal lines of equal task performance to assess differences
in avalanche energy. At low photon counts the proposed edge-enhancing policy
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Fig. 5: Power-efficient static imaging via inhibition. (a) Images from an expo-
sure bracketing sequence (average exposure of 0.1, 1.0, 10.0 photons per pixel (ppp))
using clocked recharge without (conventional) and with inhibition. (b) the distribution
of measurements based on pixel intensity with H at 1.0 ppp. (c) image quality (SSIM)
at equal detections/pixel. (d-g) Handcrafted policies are tested over 20 images and as-
sessed by reductions in detections (D) at equal SSIM. The top row (d),(e) use exposure
bracketing; (f),(g) use a single exposure of 1.0 ppp. (d),(f) at SSIM=0.7 and (e),(g) at
SSIM=0.8. The box shows quartiles with the center line at the median. The proposed
policy, Pcr, is a 3×3 spatial kernel that emphasizes the center pixel (×8) and includes
the 8 neighbors (×1) (see the supplement for policy details). (h) average inhibition
patterns for each exposure time. The top most pattern inhibits the brightest pixels
only (maximum of ∼60% inhibition, primarily in the sky). For the longest exposure
time the inhibition pattern allocates measurements primarily to the darkest pixels.

-24% D

-6% D

-30% D

Fig. 6: Energy-efficient edge detection by inhibition: Edge detection F-scores
averaged over 19 images versus average detections/pixel. Horizontal arrows show re-
duction in detections enabled by inhibition at equal task performance. At and beyond
30 D/pix. no inhibition and the proposed policy are nearly equivalent and plateau at
200 D/pix. The edge detector returns F = 0.813 on the original images of this set.
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demonstrates a 30% reduction in detections on single exposure time captures.
This policy extends the on-sensor calculation approach by calculating two scores,
the conventional 3×3 Laplacian [55] as S1 and a 3×3 averaging filter as S2. The
final inhibition decision is the Boolean operation of these scores as ((η1<S1<η2)∧
(S2 > η3)) ∨ (S2 > η4). The Laplacian policy alone performs poorly as photons
in dim regions with minimal spatial variation are inhibited – disabling dim pixels
is energy inefficient. Complete policy descriptions are in the supplement.

7 Experiments on Dynamic Scenes

Many real-world scenes contain significant motion even with the high frame rate
of a SPAD camera. Burst reconstruction algorithms yield high-quality images
from sequences of binary frames [37,38] – we investigate their compatibility with
the inhibited photon detection data. In particular, we focus on the saturation
look-ahead policy of Fig. 4(a), applied independently at every pixel, and therefore
an example of an adaptive single-pixel temporal policy.

To avoid losing salient information under motion, the inhibition policy must
limit periods of extended dead time. In the context of the saturation look-ahead
policy this limits the total exposure length of the bracketing sequence, since we
implicitly assume flux to be constant within each sequence. In our experiments,
we use a Fibonacci bracketing [23] sequence T := {1, 1, 2, 3, 5, 8, 13, 21}6, de-
noted in the units of a single minimal exposure time. Every measured bracket is
converted to a maximum-likelihood estimate of flux, which is then supplied to
the quanta burst photography algorithm [37]. The flux estimator from bracketed
measurements is described in detail in supplement Sec. S7.2.
Results with the SwissSPAD2 sensor: The SwissSPAD2 sensor [54] is a
prototype SPAD pixel array that can produce binary frames at a rate up to
97,700 FPS, with a resolution of 512×256. In our experiments, we use binary
frames captured directly (without inhibition) by the SPAD array as reference
data and emulate on-sensor saturation look-ahead inhibition in software. As a
pre-processing step, measurements at hot pixels are replaced with their nearest
neighbors.

Fig. 7 shows the results of burst reconstruction under three lighting condi-
tions. The raw data is a sequence of >580,000 binary frames with scene radiance
increasing rapidly by orders of magnitude (Fig. 7(b)), from <1 lux to >4,000 lux,
measured separately with a light meter. For each of 47 equally-spaced keyframes,
centered windows of 12,000 binary frames are extracted and processed as de-
scribed above. Results for the full sequence can be found in the supplementary
material. A static inhibition policy of regular sub-sampling (dropping 9 out of
every 10 frames) is also applied, which yields a fixed 90% reduction in both
measurements and photon detections under all lighting conditions. Other sub-
sampling factors are discussed in the supplement.

6 Sequence T ′ := {1, 1, 1, 3, 3, 3, 8, 8, 25} yielded similar results. No extensive search
over the policy space was performed.
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Fig. 7: Adaptive policies on video sequences enable stronger inhibition, pre-
serve low-light details and, in bright-light, decouple flux and detection en-
ergy. (a) Burst reconstructions [37] for three keyframes with varying light levels: the
top and bottom row differ by ≈ 7 stops. [Images show the detection rates Y and are fur-
ther gamma-compressed (γ = 0.4). Complete results included in the supplement.] Left
column results are from the original binary frames without inhibition, and the right
column after sub-sampling 10× (a fixed 90% inhibition). Middle column represents
exposure bracketing combined with saturation look-ahead (see Fig. 4a for description).
Under strong light (top row) the results are reasonable with both methods. However,
plain sub-sampling loses details in lower light: notice the furniture and a person’s out-
line in the middle & bottom rows, respectively. Inhibition is instead adaptive to flux.
(b) Average exposure level for each keyframe in the sequence. (c,d) Per-keyframe and
cumulative detection counts – inhibition ultimately results in fewer photons being de-
tected over the whole sequence. (e) Number of measurements taken for each keyframe;
reductions may be translated to energy savings during read-out. Plots in (c,d,e) are
sub-sampled for clarity, and crossover points are marked by green arrows.

The top row in Fig. 7(a) shows that under strong light a large fraction of
photons (>90%) can be inhibited through the saturation look-ahead policy and
still result in good image quality after burst reconstruction, thus spreading pho-
ton detections over a longer period of time to reduce avalanche power. Even
simple sub-sampling yields good results in bright light, and may work well un-
der controlled illumination conditions. However, the images in the middle and
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bottom rows illustrate that this static inhibition policy results in excessive signal
loss in lower light leading to a loss of details. Sub-sampling may be enhanced
by adjusting exposure time and/or the sub-sampling factor in response to global
flux but cannot simultaneously optimize for different light levels within a sin-
gle frame: over-exposed regions may have clipping artifacts and under-exposed
regions are prone to motion blur from incorrect burst reconstruction. The satu-
ration look-ahead policy does adapt to local flux, and allocates relatively more
detections to dim regions (see Fig. 1(d)). It thus decouples detection energy from
flux (Fig. 7(c); cf. Fig. 1(a)), and results in cumulatively fewer detections than
sub-sampling (Fig. 7(d)) due to it being more aggressive in strong light.

Apart from photography, the burst-reconstructed images can be used in com-
puter vision applications, where even stronger inhibition is possible depending
on the noise- or blur-robustness of the vision algorithm. Fig. 1(d) shows suc-
cessful object detection with the YOLOv8 algorithm [32] applied to a burst-
reconstructed image, with approximately 95% photon detections inhibited.

8 Limitations and Future Outlook

Implementation costs. Our focus in this paper is on reducing energy con-
sumption due to avalanches. Although avalanches contribute significant energy
as compared to on-sensor computations [2, 45, 51], an important next step is to
design a holistic model that includes the energy consumption of computations
and readout (leveraging Eq. 7). Our in-pixel computations — power-of-two mul-
tiplications which simplify to bit shifts, small spatio-temporal kernels no larger
than 3×3×4 — are designed to be lightweight. Fortunately, computational SPAD
imagers [2] with in-pixel memory and compute have recently been proposed, with
4×4 block of pixels having a 32-bit CPU and over 10 kbits of memory. See the
supplement for an estimate of the required circuitry.
More complete models. The noise model used for efficiency metrics only ac-
counts for photon Poisson noise and the quantization noise of Bernoulli samples.
Expanding the noise model to include uncorrected pixel sensitivity variations,
crosstalk, and afterpulsing may improve performance [5] by allocating measure-
ments with an awareness of practical sensor limitations. Inhibition modulates
the number of Bernoulli trials. An unbiased estimator for data-dependent stop-
ping of Bernoulli trials is known [26], yet is not applied in this work since it does
not precisely match our situation. Our simulations (SSIM) suggest that bias is
less significant than image noise, yet future analytical studies are needed over a
range of conditions.
Generalization to other tasks. To generalize the proposed approaches to a
variety of vision tasks, task-specific quality metrics must be defined to pose op-
timization problems for each task. As an example, for the image reconstruction
task, Suppl. Sec. 3.1 shows an analytical optimization using the MSE metric
when constrained by photon detections. Other tasks could be approached simi-
larly, yet may need to be optimized empirically.
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Supplementary Information

S 1 Photon Flux Values in Photometric Units

Fig. 1(a) in the main text shows the rate of growth in camera power consumption
as a function of photon flux in photons per second. Unfortunately, due to the
complications involved in direct conversion of radiometric photon flux into pho-
tometric quantities, it is not possible to provide exact numbers (in lux) for the
photon flux. For some intuition on the real-world lighting conditions that these
photon flux values correspond to, we provide “back of the envelope” estimates in
terms of lux levels using the following relationship:

illuminance (lux) ≈ hc

λ

Kϕ

A

where h = 6.626 × 10−34 is the Planck’s constant, c = 3 × 108 is the speed of
light in vacuum, λ is the nominal visible wavelength of light which we assume
is 555 nm at which the luminous efficacy of an ideal monochromatic light source
is K = 683 lm/W, ϕ is the incident photon flux (adjusted for the SPAD pixel’s
non-ideal quantum efficiency of 20%), and A is the effective pixel area (assuming
a pixel pitch ∼ 4 µm and fill factor of 10%). Plugging in the range of photon
fluxes 103 − 106 gives a range of lux levels from < 1 lx to over 1000 lx. These lux
levels are approximately denoted by icons along the x-axis in Fig. 1(a) as < 1 lx
for a moonless night, ∼ 1− 10 lx for twilight, ∼ 100 lx at sunrise or sunset, and
>∼ 1000 lx on a clear sunny day outdoors.

S 2 Power consumption estimates

Since we do not have a hardware prototype of our own, we make a very rough
estimate here based on previously published works. From Fig. 4.15 on pg. 97 of
Andrei Ardelean’s thesis [2], computations in the UltraPhase imager effectively
use ∼ 0.21 mW to constantly perform "MAC operations with data in registers"
in a tight loop (= 1.19 mW total − 0.98 mW "standby" power use). Since
UltraPhase has 12x24 = 288 pixels, this comes out to about 729 nW per pixel.
Energy consumption by avalanches is estimated in [48] as 11.6 pJ/avalanche, for
a different SPAD sensor (not the SwissSPAD2). This suggests that we should
come out ahead if we can inhibit at least 729nW

11.6pJ/detection = 62,845 detections/sec.
Under the parameters of Sec. S1 above, an example of this would be going from
90,000 det./sec. (∼230 lux, mapping to daylight or office light) to 25,000 det./sec.
(effectively ∼30 lux, around dusk) — still enough for a reasonable image with a
SPAD sensor. Therefore there exists a very plausible application setting where
inhibition can make an impact.

The numbers above are clearly not specific to our sensor and computations.
The UltraPhase processing is reconfigurable and has a 32-bit wide arithmetic
logic unit; whereas, inhibition processing would use fixed logic with smaller bit
widths. As such we expect the above to be an over-estimate of the computation
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power. We would also need to measure the avalanche energy expenditure of the
SwissSPAD2 sensor instead of re-using the estimates from [48].

S 3 Spatio-temporal Policies for Static Imaging

S 3.1 Simulation Implementation Details

In this section, the methods for the simulations of Section 6 of the main manuscript
are described. Images from the BSDS500 dataset [1] were used to simulate
binary-frames (specifically 20 images were randomly selected from the official
test set). This dataset was chosen due to the availability of ground truth edge
maps. Images were gamma-decompressed using the sRGB to CIE XYZ trans-
formation (γ ≈ 2.2) and converted to grayscale using the OpenCV color space
conversion function (cvtColor with COLOR_BGR2YUV) to create a reference
image. For each reference image, 1,000 binary frames were simulated using Monte
Carlo methods for each exposure time of interest and saved to disk. Exposure
times are reported in units of the average number of photon arrivals per pixel
(ppp), since absolute radiometric quantities are not available.

For static imaging, inhibition policy simulations were run for each exposure
time separately. Once inhibition patterns are found for each frame index t, the cu-
mulative detections and measurements are calculated for each frame index. This
approach allows for extraction of performance metrics and images at a continu-
ous range of average detections per pixel by selecting the number of accumulated
binary frames. For exposure bracketing simulations an HDR reconstruction was
generated at each frame index using SNR2 weighting [21]. Metrics of SSIM [56]
and mean squared error (MSE) were calculated on binary rate images for the ac-
cumulated binary frames with and without inhibition at each frame index using
the original image as the reference.

S 3.2 Assessing Inhibition

Pixels that are inhibited are known at the beginning of a frame. An inhibited
pixel is insensitive to photon arrivals and, as such, does not consume (avalanche)
power when a photon converts. Inhibition is expected to be implemented by
lowering or keeping the pixel SPAD bias below the threshold voltage for an
avalanche. A pixel that is not inhibited measures either a ’0’ (if no photons
arrived) or a ’1’. The avalanche energy is assumed the same for one and more
than one photon in a single frame, which has been demonstrated in hardware [41].
To assess the energy efficiency, measurement efficiency, and energy reduction
enabled by inhibition we track the number of measurements (W ) at each pixel
and total measurements (WT ), and similarly the number of detections (D) for
each pixel and total detections (DT ). These quantities are defined as follows:
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W (i, j) =

t=N−1∑
t=0

(1−M(i, j, t)) (S9)

WT =
∑
i,j

W (i, j) (S10)

D(i, j) =

t=N−1∑
t=0

F (i, j, t) =

t=N−1∑
t=0

(1−M(i, j, t))Y (i, j, t) (S11)

DT =
∑
i,j

D(i, j), (S12)

where N denotes the number of binary frames. Measurements W (i, j) are the
total number of frames during which pixel (i, j) was not inhibited (i.e., the in-
hibition pattern M(i, j) = 0). The number of measurements may correlate with
the readout energy if an unconventional readout architecture, such as token
passing [18] or asynchronous event readout [4], is combined with the inhibition
pattern. Detections D(i, j) are the total number of frames during which a pho-
ton was detected by pixel (i, j) when enabled. The number of detections tracks
the total avalanche energy consumed by that pixel. Suppl. Table 1 summarizes
relevant parameters used for evaluating different inhibition policies.

Description Variable Values / Units
Photon flux ϕ(i, j, t) photons/s
Binary frame exposure time T s
Exposure H(i, j, t) = ϕ(i, j, t)T photons
Inhibition pattern (disabled = 1) M(i, j, t) 0/1
Incident binary frame Y (i, j, t) ∼ Bernoulli(1− e−H(i,j,t)) 0/1
Binary frame (after inhibition) F (i, j, t) = Y (i, j, t) · (1−M(i, j, t)) 0/1
Binary rate estimate Ŷ (i, j) =

∑
t

F (i,j,t)
M(i,j,t)

[0,1]

Explicitly inhibited photons I(i, j, t) = Y (i, j, t) ·M(i, j, t) 0/1
Total photon detections DT =

∑
t

D(i, j) =
∑
t

F (i, j, t) photons

Fraction of (possible) photons inhibited IF =
∑

I(i,j,t)∑
Y (i,j,t)

[0,1]
Suppl. Table 1: Relevant quantities for assessing inhibition policies. Pixels are indexed
by i and j while t = 0, 1, ..., N − 1 is the discrete frame number. Explicitly inhibited
photons are due to the inhibition pattern itself and not clocked recharge policy.

S 3.3 Details of Imaging Policies

Sec. 5 and Figures 5, 6 in the main text describe static inhibition policies that use
spatio-temporal information to compute inhibition patterns. The aggressiveness
of these policies is controlled through two parameters η and τH : lower values of η
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and higher values of τH can be used to reduce the number of measurements, and
hence reduce the total avalanche energy consumption. The policies shown below
are the best performing combinations of η and τH on exposure bracket captures
shown in Fig. 7 (main text) for each of the four spatial policies presented. Policies
are designed so that multiplications can be implemented using bit shifts (powers
of two) for ease of future in-pixel hardware implementation.

Pcr : Ks =

1 1 1
1 8 1
1 1 1

 , KT =
[
1 1 1 1

]
, η = 12, τH = 32; “Center + ring”

PL : Ks =

1 1 1
1 −8 1
1 1 1

 , KT =
[
1 1 1 1

]
, η = 24, τH = 4; “Laplacian”

Pavg : Ks =

1 1 1
1 1 1
1 1 1

 , KT =
[
1 1 1 1

]
, η = 6, τH = 32, “Average”

Ps : Ks =

0 0 0
0 1 0
0 0 0

 , KT =
[
1 1 1 1

]
, η = 2, τH = 32; “Single pixel”

The policies described below (and annotated with a ′) are the best performing
combinations of η and τH on single-exposure time captures in Fig. 7 (sub-figures
f and g) of the main manuscript for each of the four spatial policies presented.

P′
cr : Ks =

1 1 1
1 8 1
1 1 1

 , KT =
[
1 1 1 1

]
, η = 12, τH = 4; “Center + ring”

P′
L : Ks =

1 1 1
1 −8 1
1 1 1

 , KT =
[
1 1 1 1

]
, η = 24, τH = 4; “Laplacian”

P′
avg : Ks =

1 1 1
1 1 1
1 1 1

 , KT =
[
1 1 1 1

]
, η = 12, τH = 4; “Average”

P′
s :, Ks =

0 0 0
0 1 0
0 0 0

 , KT =
[
1 1 1 1

]
, η = 2, τH = 8; “Single pixel”

Inhibition policies for static imaging were studied by simulations at parameters
values of η = [2, 6, 12, 24] and τH = [4, 8, 16, 32]. A more extensive search was
not attempted due to computation time and disk usage.
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S 3.4 Additional Static Image Simulation Results

Suppl. Figs. 1, 2, and 3 expand upon the results of Fig. 5 of the main text to show
inhibition patterns and resulting images at three levels of average detections per
pixel using the Pcr policy described above with η = 12 and τH = 32.
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Suppl. Fig. 1: Power-efficient static single-photon imaging via inhibition. A
reference image (BSDS500: 393035) displayed in the top left is captured using a bracket
of three exposure times with 1,000 binary frames for each exposure time. The second
column displays the resulting average inhibition patterns for each exposure time. The
top most pattern from the shortest exposure time modestly inhibits and does so at the
brightest pixels only. The inhibition pattern of the longest exposure time allocates most
measurements to the darkest areas of the scene (in the shadows to the right of boat
in the the foreground). The bottom chart summarizes the inhibition patterns using
smoothed curves of the inhibition percent versus the flux of each pixel for each of the
three exposure times (Lowess filter with a fraction of 1/5). The right-most columns
show binary rate images using gamma compression (γ = 0.4) without (left) and with
(right) inhibition at equal average detections per pixel. Detections increase moving
down with averages of 5, 12, and 30 detections per pixel shown. Image quality metrics
versus detections per pixel are summarized in the center and bottom of the left most
column.
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Suppl. Fig. 2: Power-efficient static single-photon imaging via inhibition.
A reference image (BSDS500: 179084) displayed in the top left is captured using a
bracket of three exposure times with 1,000 binary frames for each exposure time. The
second column displays the resulting average inhibition patterns for each exposure
time. The top most pattern from the shortest exposure time only modestly inhibits and
does so at the brightest pixels only (maximum of ∼60% inhibition, primarily in the
sky). The inhibition pattern of the longest exposure time allocates most measurements
to the darkest areas of the scene (the hilltop and the dark areas of the helicopter).
The bottom chart summarizes the inhibition patterns using smoothed curves of the
inhibition percent versus the flux of each pixel for each of the three exposure times
(Lowess filter with a fraction of 1/5). The right-most columns show binary rate images
using gamma compression (γ = 0.4) without (left) and with (right) inhibition at equal
average detections per pixel. Detections increase moving down with averages of 5, 12,
and 30 detections per pixel shown. Image quality metrics versus detections per pixel
are summarized in the center and bottom of the left most column.



26 L. Koerner et al.

%
 i
n
h
ib

it
io

n
%

 i
n
h
ib

it
io

n
%

 i
n
h
ib

it
io

n

%
 i
n
h
ib

it
io

n

M
S
E

S
S
IM

T: 0.1 ppp No inhibition
Inhibition patterns

5 D./pixel

12 D./pixel

30 D./pixel

Inhibition
ImagesReference image

Metrics vs. detections/pix.

T: 1.0 ppp

SSIM=0.29 SSIM=0.36

SSIM=0.44 SSIM=0.50

T: 10.0 ppp

SSIM=0.60 SSIM=0.72

Suppl. Fig. 3: Power-efficient static single-photon imaging via inhibition. A
reference image (BSDS500: 130066) displayed in the top left is captured using a bracket
of three exposure times with 1,000 binary frames for each exposure time. The second
column displays the resulting average inhibition patterns for each exposure time. The
top most pattern from the shortest exposure time only modestly inhibits and does so at
the brightest pixels only. The inhibition pattern of the longest exposure time allocates
most measurements to the darkest areas of the scene (the dark stripes of the zebra).
The bottom chart summarizes the inhibition patterns using smoothed curves of the
inhibition percent versus the flux of each pixel for each of the three exposure times.
(Lowess filter with a fraction of 1/5). The right-most columns show binary rate images
using gamma compression (γ = 0.4) without (left) and with (right) inhibition at equal
average detections per pixel. Detections increase moving down with averages of 5, 12,
and 30 detections per pixel shown. Note the improved contrast of the image captured
using an inhibition policy in the bottom row (30 D./pix). Image quality metrics versus
detections per pixel are summarized in the center and bottom of the left most column.
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Suppl. Fig. 4 shows the average percent change from no inhibition to inhi-
bition in detections (top row) and measurements (bottom row) at equal image
quality versus two parameters of the Pcr proposed inhibition policy. These charts
demonstrate the balance of detection efficiency and measurement efficiency. Effi-
ciency improvements via inhibition correspond to negative values. For the expo-
sure bracket scenario, the improvement in detection efficiency by more aggressive
inhibition (τH ↑) shown in (c) increases the measurements, and hence degrades
measurement efficiency (d). As seen in (e, f, g, h) a single exposure time policy
performs best with less aggressive inhibition (τH = 4) since frames with a shorter
exposure time are not available to fill in missing information for the brightest
and aggressively inhibited pixels. Yet, single exposure time policies still reduce
detections by nearly 15%.

(a)

Brackets Single Exposure Time

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Suppl. Fig. 4: Inhibition tuning parameters tradeoff detections and mea-
surements. For the Pcr (exposure brackets, left) and P ′

cr (single exposure, right)
policies percent change in detections (D) and measurements at SSIM=0.7 with one
parameter varied. (a) D% (as compared to without inhibition) versus the inhibition
threshold η at a constant holdoff time (τH = 32). A negative value, as in (a), indicates
that the inhibition policy required fewer detections for equal SSIM. Notice in (b) how
measurements (as % of total possible) increase (measurement efficiency degrades) at
more aggressive inhibition thresholds (smaller η). (c) Shows the impact of the holdoff
time (τH) at a constant threshold of η = 12. (e, f, g, h) show the same for a single
exposure time capture. For (e, f) τH = 4 and for (g, h) η = 12.
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S 3.5 High Dynamic Range Simulation Results

Score-based inhibition: We also assessed the impact of scored-based inhibition
to high dynamic range images from the Laval indoor HDR dataset [20]. Suppl.
Figs. 5 and 6 summarizes the results from the Pcr policy described above with
η = 12 and τH = 32. To accommodate the wide range of illumination in these
images the simulations used five logarithmically spaced exposure times (in steps
of ×10). Before simulation, the images were reduced in size by ×4 along both di-
mensions using openCV resize with the default bilinear interpolation method to
decrease the time required for simulation. When capturing high dynamic range
scenes, inhibition allows for a wide range of exposure times to efficiently mea-
sure bright and dim pixels with a reduced increase in avalanches at the brightest
pixels. For these experiments the exposure time sequence was not carefully ex-
plored. Future work could optimize the sequence of exposure times in concert
with the inhibition policy while using a more holistic energy cost model.

%
 i
n
h
ib

it
io

n
%

 i
n
h
ib

it
io

n
%

 i
n
h
ib

it
io

n
%

 i
n
h
ib

it
io

n
%

 i
n
h
ib

it
io

n

M
S
E

S
S
IM

T: 0.01 ppp
No inhibition

Inhibition patterns

5 D./pixel

12 D./pixel

30 D./pixel

Inhibition

ImagesMetrics vs. detections/pix.

T: 0.1 ppp

T: 1.0 ppp

SSIM=0.25 SSIM=0.30

SSIM=0.39 SSIM=0.59

T: 100.0 ppp

T: 10.0 ppp

SSIM=0.57 SSIM=0.77

%
 i
n
h
ib

it
io

n

Suppl. Fig. 5: Power-efficient static single-photon imaging via inhibition.
A reference image (9C4A0599; 143.5 dB dynamic range) is captured using a bracket
of five exposure times with 1,000 binary frames for each exposure time. The second
column displays the resulting average inhibition patterns for each exposure time. The
top most pattern from the shortest exposure time modestly inhibits and does so at
the brightest pixels only. The inhibition pattern of the longest exposure time allocates
most measurements to the darkest areas of the scene. The bottom chart in the leftmost
column summarizes the allocations of measurements using smoothed curves of the
inhibition percent versus the flux of each pixel for each of the three exposure times
(Lowess filter with a fraction of 1/5). The right-most columns show binary rate images
using gamma compression (γ = 0.4) without (left) and with (right) inhibition at equal
average detections per pixel. Detections increase moving down with averages of 5, 12,
and 30 detections per pixel shown. Image quality metrics versus detections per pixel
are summarized in the leftmost column.
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Suppl. Fig. 6: Power-efficient static single-photon imaging via inhibition.
A reference image (AG8A7597; 173.6 dB dynamic range) is captured using a bracket
of five exposure times with 1,000 binary frames for each exposure time. The second
column displays the resulting average inhibition patterns for each exposure time. The
top most pattern from the shortest exposure time modestly inhibits and does so at
the brightest pixels only. The inhibition pattern of the longest exposure time allocates
most measurements to the darkest areas of the scene. The bottom chart summarizes
the allocation of measurements using smoothed curves of the inhibition percent versus
the flux of each pixel for each of the three exposure times (Lowess filter with a fraction
of 1/5). The right-most columns show binary rate images using gamma compression
(γ = 0.4) without (left) and with (right) inhibition at equal average detections per
pixel. Detections increase moving down with averages of 5, 12, and 30 detections per
pixel shown. Image quality metrics versus detections per pixel are summarized in the
leftmost column.

Saturation look-ahead inhibition: We estimated the benefits of saturation
look-ahead inhibition analytically using the 10 images with the widest dynamic
range in the Laval indoor HDR dataset (up to 178 dB DR) [20]. The specific
policy uses an exponential bracketing scheme with 5 exposure times scaled as
Tn+1 = 5Tn, and 10 measurements are taken with each one. The thresholds to
inhibit subsequent exposures under the saturation look-ahead policy were set as
D = {6, 6, 6, 6}, to ensure that on average, the flux range crossing them has a
probability of photon detection of 0.99 or greater in the next (longer) exposure,
representing (near) saturation. That is to say, taking T1 < T2, the detection rate
Y1 at the exposure time of T1 that corresponds to a near-saturating detection
rate of Y2 at exposure time T2 is computed as:

Y1 = 1− e
T1
T2

log(1−Y2) = 1− e0.2×log(1−0.99) ≊ 0.60 = 6/10. (S13)
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The analytical results calculated using a subset of pixels from each of the im-
ages show that exposure brackets inhibit 90.6% of detections as compared to
a minimum exposure time of equal observation length. The saturation look-
ahead policy further reduces detections by an average of -38.4% as compared to
bracketing alone. In total, averaged over the 10 images, look-ahead inhibition
with exposure bracketing inhibits 94.0% of the detections. The images studied
were 9C4A6135, AG8A3343, AG8A2979, AG8A5920, AG8A7597, AG8A6813,
9C4A3821, 9C4A3335, 9C4A1696, and 9C4A0599.

S 3.6 Details of Edge Detection Policies

A high performing edge detection policy is presented in Section 6.2 and Fig. 6
of the main manuscript. This policy calculates a score from the 3×3 Laplacian
(S1) and a 3×3 average filter (S2). The final inhibition decision is the Boolean
operation of these scores as ((η1<S1<η2) ∧ (S2 > η3)) ∨ (S2 > η4). The thresh-
olds for the Laplacian score S1 are η1 = −12, η2 = 12 which detects regions of
minimal spatial variation. To inhibit based on minimal spatial contrast, we ad-
ditionally require that the average score exceeds a modest threshold, η3 = 4, so
that dim neighborhoods are not inhibited. Finally, independent of the Laplacian
calculation, the pixel is inhibited if the average score is excessive, η4 = 16. For
this policy, τH = 16. As in the policies for static imaging, the temporal kernel
was KT =

[
1 1 1 1

]
.
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S 4 Photon Efficiency and Metrics

S 4.1 Oracle Measurement Allocation

This supplemental section motivates the assertion that an optimal measurement
allocation that minimizes image MSE allocates measurements in proportion to√
1− Y . Photon inhibition enables an unequal distribution of measurements

among the pixels of the sensor. To guide the design of inhibition policies pre-
sented in the main manuscript we considered two questions. How should a fixed
number of detections be allocated among pixels of a single-photon sensor to
optimize the image mean squared error (MSE)? By what amount can image
metrics be improved by measurement allocation policies when total detections
are constrained?

The variance of the binary rate estimate of pixel i with binary rate Yi and
allocated Wi measurements is

σ2
Yi

=
1

Wi
Yi(1− Yi). (S14)

The MSE is the sum of the variances over all pixels P . A minimum of the
MSE is found by differentiating with respect to Wi and constraining the total

detections to DT =
P∑
i

YiWi. The optimal measurements allocated to pixel i for

this minimum MSE is then

W ∗
i =

DT√
Yi


√

Yi(1− Yi)
j=P∑
j=1

Yj

√
1− Yj

 . (S15)

Equation (S15) shows that when constrained by total detections, total image
MSE is minimized when measurements are allocated in proportion to

√
1− Y .

This analytical approach requires perfect knowledge of the photon flux at each
pixel, a non-causal “oracle”, and is thus an upper bound on the improvements
enabled by photon inhibition. Similar optimal allocation policies may be devel-
oped for a scenario with a constraint on measurements rather than detections.
These allocations were derived separately and then later very similar allocations
were found in the work of Medin et al. which derives optimal stopping rules for
active imaging systems designed to estimate Bernoulli parameters [39].

To validate Eq. (S15) we simulated the same 20 BSDS500 images as used in
the main manuscript at a single effective exposure time of an average of 1 photon
per pixel. To prevent unbounded allocations, pixels were forced to a minimum
rate of Y = 0.01 and a maximum rate of Y = 0.99. The variance of each pixel
was calculated as Eq. (S14) and the image MSE was evaluated as the average
of the variances of all pixels. Two measurement allocations were evaluated. The
first approach allocated measurements equally between all pixels (“Uniform”);
the second approach allocated measurements as defined in Eq. (S15) (“MSE op-
timal”). With the image variance calculated from the ground truth binary rate
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and the measurements allocated to each pixel, a noise corrupted image was gen-
erated by adding noise from Gaussian distributed samples at each pixel to the
ground truth image. The noise image was then clipped to between [0,1]. This
noise image was used to assess image quality metrics, such as SSIM, by compar-
ison to the reference image. Supp. Table 2 demonstrates these simulated results
using the oracle “MSE optimal” measurement allocations. The simulations sug-
gest that the inhibition policy results presented in the main manuscript (∼15%
detection reduction) approach the limits established by an oracle allocation for
these specific images. Potential sources of discrepancy include that an analytical
allocation was only available for image MSE and because the oracle simulations
added Gaussian distributed noise.
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A Generalized Formulation A binary quanta sensor artificially “squeezes” noise
in the high-flux regime [16], and therefore one may say that exposure-referred
noise is a more appropriate objective than the binomial mean-squared error
(MSE) considered so far.

To accommodate a more general analysis we define the following image-space
loss function

Lim. :=
∑
i

1

Wi
Ei, (S16)

where Ei is an arbitrary per-pixel normalized loss which is subsequently driven
down by averaging Wi measurements. Ei is therefore assumed to be a function
of Hi (or equivalently, Yi). We maintain the same constraint on the total number
of detections: ∑

i

WiYi = DT . (S17)

Applying the method of Lagrange multipliers to the loss function L := Lim.+
λ (
∑

i YiWi −DT ), yields the optimal allocation

W opt.
i = DT

( √
Ei/Yi∑

j Yj

√
Ej/Yj

)
∝
√

Ei

Yi
. (S18)

It can be verified that on setting Ei = Yi(1− Yi), the
√
1− Y weighting of Eq.

(S15) is recovered.
Suppl. Table 3 shows three other possible loss functions with the optimal

allocations obtained using the process above. The binomial MSE has already
been discussed. “Exposure-referred MSE” transfers the error to the linear radi-
ance domain, for which the optimal allocation is proportional to 1√

1−Y
. This

loss function has a potential problem: the optimal allocation diverges for very
high flux (Yi → 1). Further, this metric generally encourages measurements to
be spread more densely over bright pixels – the opposite of the binomial MSE
discussed previously. Images acquired under this allocation do have slightly more
detail (less noise) in highlights compared to both a uniform spread as well as
weighting by

√
1− Y , but at the cost of almost complete loss of detail in dark

regions (Suppl. Fig. 7).
The problem with exposure-referred MSE is partially compensated by defin-

ing a relative version, which normalizes it by the squared radiance – minimizing
this is equivalent to maximizing SNRH directly. The optimal allocation is now
proportional to 1

H
√
1−Y

. Images acquired under this allocation do preserve much
more detail in dim regions (Suppl. Fig. 7) – perhaps excessively so, in fact, since
the allocation now diverges for H → 0 as well! This is particularly a problem
under high dynamic range: while we can reasonably assume a finite upper bound
on flux, there is no obvious lower limit of flux.

The issues with exposure-referred error measures stem from the under-specified
nature of the problem so far. A simple approach to addressing the issue of diverg-
ing allocations is to regularize the problem: clamping the detection rate Y to the
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range [0.01, 0.99] can be considered one form of this. Another principled alterna-
tive would be to formally include the several forces limiting the total number of
measurements allowed: the amount of camera and scene motion, readout band-
width and power consumption, and the latency-sensitivity of the vision task.
Placing explicit inequality constraints on total measurements results in a more
complex optimization problem which does not have a closed-form solution. This
is an important question which we do not explore further here and leave for
future work.

The fourth row of Suppl. Table 3 places the saturation look-ahead policy of
the main paper in the current context. In Fig. 4 of the main paper, the expected
number of detections E[Di]

opt. tracks the SNRH/W plot in log-log space, which
suggests a power-law relation (at least approximately). Working backwards from
that result to the loss function for which that allocation is optimal, provides in-
sight into the behavior of the policy (which was definitely not designed with any
formal optimization problem in mind, only to yield adequate performance and
be practically feasible – see Suppl. Sec. S 7.2 for related discussion). Focusing on
the k = 2 case from the table, we see that the so-called “loss” function that the
saturation look-ahead policy appears to minimize is a sum of (powers of) SNRs,
which does seem extremely counter-intuitive. A way to make sense of this ob-
servation is to realize that if treated abstractly, the function SNR2

H/D ·SNR2
H/W

is larger for dim pixels, and therefore an allocation that favors dim pixels drives
down the “loss” further. This is the essence of the behavior we intuitively seek
from an inhibition policy:

√
1− Y weighting does the same. However, this is by

no means an ideal metric, and tracking the SNRH/W curve precisely is not an
absolute necessity. Even confining ourselves to the space of the four choices con-
sidered in Suppl. Table 3, the allocation under binomial MSE appears to yield
visually better images than the SNRk

H/W -tracker, and so an inhibition policy
that can practically realize it is likely to perform even better than saturation
look-ahead.
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1 3 10 50 150
(b)

(a)

1 3 10 20 50#measurements

Uniform Binomial MSE Exposure-referred MSE

Relative

exposure-referred MSE SNRH/W tracking
2

Suppl. Fig. 7: Two example images simulated under optimal allocations for the met-
rics of Table 3, in bottom rows of (a) and (b). The pseudo-color images in the top rows
display the number of binary exposures allocated to each pixel by the expressions in the
table (the colormap is in log-scale) – the total expected number of detections is held
constant for all allocations. The actual images are simulated by rounding those expres-
sions, and assuming a mean flux of 1.59 photons/pixel over the complete image for a
single binary exposure (the peak of the SNRH curve [9]). Pixels with zero measurements
are replaced with either zero or the maximum flux of the true image, as appropriate for
each individual metric (the choice is independent of the image). The binomial MSE,
the relative exposure-referred MSE, and the SNRH/W -tracking loss function result in
denser allocation towards dim pixels (and generally improved image quality), while
the plain exposure-referred MSE does the opposite in both aspects. The peaky nature
of the allocation with relative exposure-referred MSE can be seen through its strong
highlights.
(The reader is requested to zoom in to observe finer details.)

Is there a point to oracle-type analysis? These optimal allocations are derived
assuming the pixel intensities are known ahead of time. These oracle policies
would not appear to be realistic, yet recent work on optimal spatially varying
exposures proposes a two-step capture sequence with the first step being a pi-
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lot image that guides configuration [47]. A similar pilot image approach may
be useful for practical implementation of the optimal measurement allocations
discussed here.

S 4.2 Binary Rate Efficiency Metrics

The efficiency metrics developed in Sec. 4.1 of the main manuscript evaluate the
SNR of the measurement of photon exposure (H). An alternative representation
of the scene is the binary rate (Y ). Exposure and binary rate are related by a
nonlinear transform of H = − ln(1 − Y ). Entropy is a possible alternative to
SNR for single-photon image sensors [22] if the application processes binary rate
images. With a binary rate of Y the entropy is

S(Y ) = −Y log2(Y )− (1− Y ) log2(1− Y ) (S19)

with a maximum of 1 bit when Y = 0.5 [22]. Similar to the main manuscript, an
entropy detection efficiency may be defined as S(Y )2/Y . Like detection efficiency
in the main manuscript, this metric also demonstrates that detections of nearly
saturated pixels are less informative and should be inhibited for energy-efficient
single-photon imaging.

S 5 Background on Static Single-Pixel Inhibition Policies

Current single-photon sensor designs implicitly inhibit photons by setting a max-
imum count [44,45] or lengthening the exposure time [51] to limit detections and
reduce avalanche energy. These architectures comprise a family of inhibition poli-
cies that operate at the individual pixel level and do not adapt as a function of
the history of photon detections. Below is background on these already existing
policies because our proposed inhibition policies build on top of these.

Suppl. Fig. 8 shows a subset of static single-pixel inhibition policies. SPADs
require recharge after an avalanche-inducing photon detection during which
recording a subsequent photon is not possible (dead time, τD). This detector
response of asynchronous recharge with dead time inhibits photons at high ex-
posure [27, 30], yet, power consumption is excessive when the average inter-
photon arrival interval is shorter than the SPAD dead time [41, 45]. Clocked
recharge is an alternative that establishes time windows, similar to a conven-
tional exposure time, during which 0 or 1 photon may be detected [45, 51].
After the first photon, any subsequent arrivals during the same predefined ex-
posure window are inhibited. The average number of inhibited photons is equal
to
∑∞

k=2(k − 1)P(K = k;H) where P denotes the Poisson probability mass
function. At the measurement-limited SNR-optimal exposure H = 1.6 there is
a Y = 0.80 chance of detecting a photon with an average of 0.83 photons in-
hibited per measurement. With H≫1 the average number of inhibited photons
approaches H − 1 yet the signal-to-noise ratio degrades because the pixel is
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nearly saturated. Clocked recharge considerably reduces power in bright light
as compared to asynchronous recharge [41, 51]. Because of this, our proposed
policies typically maintain and extend clocked recharge.

Clocked recharge with exposure brackets [15,51], shown in Suppl. Fig. 8(c), is
a static inhibition policy that uses multiple exposure times to balance constraints
on detections and measurements while maintaining SNR over a range of illumina-
tion levels. Longer exposure times measure dim pixels with good SNR and limit
the detections of bright pixels; short exposure times measure bright pixels with
good SNR. Suppl. Fig. 9 guides the tradeoffs between detections, inhibitions,
and SNR when selecting a single exposure time of a bracketing sequence. Suppl.
Table 4 selects three specific exposure times of an exposure bracket inhibition
policy and tracks detections, inhibitions, and the contributions of each exposure
time to the HDR reconstruction. Due to near saturation, the detections by the
brightest pixel at the longest exposure time(s) have a low weighting for SNR-
based HDR reconstruction [21] but still represent 10/25.7 = 38.9% of the total
detections, suggesting a clear opportunity for more advanced inhibition policies
to reduce avalanche power.

(a)
Inhibit
Window

Photons

time

X

τD τD

X XX

τD

(b)
Inhibit
Window

Photons

time

T T T T

X X X

(c)
Inhibit
Window

Photons

time

T1 T1 T1 T2 T2 T3 T3

X X X X X

Suppl. Fig. 8: Single-pixel static inhibition policies without computations.
Arrows represent incoming photons with an ‘X’ for inhibition. (a) Asynchronous
recharge with dead time (τD). After a photon detection, the bias voltage of a SPAD
must be recharged. During this dead time (τD) photons are inhibited. (b) Clocked
recharge. The recharge period of T sets a window in which 0 or 1 photons can be
detected. Subsequent photons within the window are inhibited. (c) Clocked recharge
with exposure brackets. An extension of clocked recharge with a sequence of different
periods.
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T = 0.1/ϕ2 T = 1.0/ϕ2 T = 10.0/ϕ2 HDR
ϕ[ϕ2] wt. D I wt. D I wt. D I SNR

0.01 0.10 0.01 0.00 0.09 0.10 0.00 0.90 0.95 0.05 1.03
0.10 0.32 0.10 0.00 0.14 0.95 0.05 0.85 6.32 3.68 2.62
1.00 0.98 0.95 0.05 0.85 6.32 3.68 0.01 10.00 88.11 2.61

Total 1.06 0.05 7.37 3.73 17.27 91.83
Suppl. Table 4: Clocked recharge with exposure bracket results for three pixel fluxes
with each exposure time using W = 10 of measurements. Flux values are in units of the
maximum flux ϕ2. wt. is the weighting for HDR reconstruction [21], D is detections, and
I is inhibitions. A bold value indicates an opportunity to improve detection efficiency
by using a more advanced inhibition policy.

Suppl. Fig. 9: (left) The SNRH (black, −) versus the exposure time with the total
sensing latency, TL, maintained by varying the number of measurements (W = TL/T )
at three different flux levels. (right) The number of detections (red, −−) and the
number of inhibitions (blue, −·−). A vertical slice represents one exposure time of an
exposure bracket policy.

S 6 Details of Experiments on Dynamic Scenes

This section details the methods for Section 7 of the main text and motivates
the sub-sampling ratio chosen for comparison in Figure 7.

S 6.1 Sub-sampling Factor Tradeoff

Sub-sampling a binary frame sequence is equivalent to setting a longer period
for clocked recharge, but with the distinction that the actual exposure duration
for which the pixel is photo-sensitive is kept constant (the length of the original
binary frame exposures). Suppl. Fig. 10 shows example results for two real images
with varying sub-sampling factors, evaluated on image quality using SSIM [56].
For sub-sampling factors greater than 10× a large drop in SSIM can be seen,
and similar behavior was obtained with the images of Fig. 7 in the main paper.

S 6.2 Additional Results

A video of the entire sequence of Figure 7 of the main text is viewable at the
project webpage: https://wisionlab.com/project/inhibition.

https://wisionlab.com/project/inhibition
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Suppl. Fig. 10: Quality versus inhibition for a single image. For two sepa-
rate sequences of 12,000 binary frames each, burst reconstruction [37] is performed
first directly (with all photons), and then with various inhibition policies: (top) ex-
posure bracketing, with and without saturation look-ahead inhibition, and (bottom)
sub-sampling by dropping frames. The binary frames were captured using the SwissS-
PAD2 sensor [54], similar to the main paper. The plots on the top-right measure the
image quality relative to the reference (no-inhibition) result using SSIM [56], versus
the fraction of photons inhibited/dropped by the policy. Sub-sampling factors larger
than 10× incur substantial image quality loss for these two images: analogous results
are expected for other scenes, possibly for different sub-sampling factors depending on
light levels. Separately, the saturation look-ahead policy provides significant inhibition
on top of bracketing, with minimal loss in image quality.
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S 7 Implementation of Proposed Policies

In Sec. S 7.1 we estimate the circuitry required to implement the proposed
calculation-based inhibition policy (of Fig. 2). A design assumption is that the
implementation will be more constrained by area than computation latency —
at 400MHz logic clock frequency [2] 4,000 clock cycles are available for compu-
tation during a 10µs recharge period. Therefore, the approach prioritizes min-
imization of the required in-pixel memory. We emphasize that these are “back
of the envelope” estimates; we have not fabricated a chip or created synthesiz-
able digital logic yet. Sec. S 7.2 describes the bracketing-based saturation look-
ahead policy in terms of the computation and memory required, as well as the
likelihood-maximization process used to convert the bracketed measurements to
an estimate of incident flux.

S 7.1 Calculation-based Inhibition

As a reminder from the main text, the inhibition score at each pixel is calculated
as

S(i, j, t) = K ∗ [(2F (i, j, t)− 1) ·M(i, j, t)] (S20)

which applies a spatio-temporal filtering kernel, K, of dimensions L,H, T to a
ternary representation of the pixel result (1, 0, or −1 for a detection, a disabled
pixel, or a measurement that does not detect a photon, respectively). The kernel
K can typically be separated into spatial and temporal components as K =
Ks ⊗ Kt with dimensions L × H × 1 and 1 × 1 × T , respectively. After each
binary frame, the score is compared to a threshold η and the pixel is disabled
for the subsequent τH frames: M(i, j, t′) = 0 for {t′|t + 1 ≤ t′ ≤ t + 1 + τH} if
S(i, j, t) > η. Suppl. Sec. S 3.3 shows the spatial and temporal kernels (Ks and
KT ) used in the simulations.

Suppl. Table 5 describes possible on-chip and in-pixel circuitry for the calculation-
based inhibition policy. A subset of the circuit elements must be independent for
each pixel as indicated by an entry of “no” in the column titled “Share?”. How-
ever, other computation circuitry could be shared among a local neighborhood
of pixels and housed in a macropixel computation unit [2, 27]. The circuitry is
separated into subcircuits of:

1. SPAD control : directly controls the bias voltage of the SPAD and allows for
enable/disable of the pixel.

2. Inhibition score: short-length memory for detection results and arithmetic
circuits (adder and shift left) for spatio-temporal computations.

3. Inhibition control : evaluates if the score, S, exceeds the inhibition threshold,
η. If S > η, disables the pixel for a count of τH clocked-recharge exposure
periods.

4. Measurement results: in-pixel counters to record the number of detections
and inhibitions. These results must be readout to reconstruct the image.
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S 7.2 Saturation Look-ahead Inhibition

This policy is described with an example in Fig. 4a of the main paper.
Pseudo-code A MATLAB-like code listing describing the complete implementa-
tion is provided below.

1 function [B_LA , M] = bracket_LA(B, seq , policy)
2 % Look -ahead inhibition with exposure brackets:
3 % Input arguments:
4 % B: Nx1 binary vector (for single SPAD pixel)
5 % seq: Tx1 bracketing sequence (integer) lengths
6 % assumed sorted in non -decreasing order
7 % policy: (length(unique(seq)) -1) x 1, integer
8 % Outputs:
9 % B_LA: Tx1 binary vector

10 % M: Nx1 "inhibition pattern" of line 299
11 % M[n] = 1 means the pixel is _enabled_.
12 B_LA = false([T 1]);
13 M = true([N 1]);
14 n = 1; sp = 0; Bsum_sp = 0; sat = false;
15 for s = 1: length(seq)
16 % Bracketing from binary SPAD frames
17 for ns = 1:seq(s)
18 B_LA(s) = B_LA(s) || (M(n) && B(n));
19 if ns < seq(s) % inh. within bracket
20 M(n+1) = M(n) && ~B_LA(s);
21 n = n + 1;
22 % Look -ahead inhibition implementation
23 if (s == 1) || (seq(s) ~= seq(s-1))
24 % new unique sequence length
25 sp = sp + 1; Bsum_sp = 0;
26 Bsum_sp = Bsum_sp + B_LA(s);
27 if sat || (Bsum_sp > policy(sp))
28 M(n) = 0; sat = true; % disable

Complexity The look-ahead inhibition policy is single-pixel and thus is expected
to allow for a lighter-weight in-pixel implementation than the calculation-based
policies. For a bracketing exposure time sequence of T := {Ti}Ki=1, the measure-
ment results are represented by the binary sequence of detections BT := {bi}Ki=1

and the inhibition pattern MT := {mi}Ki=1, where mi = 1 denotes the pixel
being enabled during that exposure. The memory footprint of both BT and MT

is already relatively small, but further efficiency is realized by recognizing that
for a given unique exposure time, the order of detections with that setting is not
important; instead just the sum of detections contributes to the flux estimate.

Furthermore, certain detection sequences are precluded by the inhibition pol-
icy. As an example, for the Fibonacci bracketing sequence [1, 1, 2, 3, 5, 8, 13, 21]
used in the main text with the inhibition policy of [2, 1, 1, 1, 1, 1], only 15 unique
combinations of (BT ,MT ) are possible. Thus, inhibition may even result in
greater efficiency than the standard exposures, not less (at least in terms of
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memory and bandwidth use) — the original Fibonacci brackets have 192 possi-
ble unique measurements. When multiple bracketing cycles are aggregated on-
chip, it may be possible to map the binary detection sequence to an index in a
histogram via an encoding implemented on-chip, with only the histogram read
out later.
Control signal flow. At the conclusion of each exposure time sequence within a
bracketing sequence, the number of detections must be compared to the threshold
count in the inhibition policy. If the comparison triggers inhibition, this status is
stored and used to disable the SPAD, as in the implementation of S 7.1. At the
end of a bracketing sequence a global signal is required to reset the inhibition
status of a pixel.

Maximum Likelihood Estimation (MLE) Computation for Exposure
Bracketing As above, the bracketing exposure time sequence is denoted by
T := {Ti}Ki=1, and the inhibition pattern by MT := {mi}Ki=1. After bracketing,
every sequence of sum(T ) =

∑
i Ti binary measurements at the original rate is

replaced with a binary sequence BT := {bi}Ki=1.
The likelihood L is given as a function of incident flux ϕ:

L(ϕ) =

K∏
i=1

[
(1−mi) +mi ·

(
exp(−ϕTi)

1−bi · (1− exp(−ϕTi))
bi
)]

. (S21)

This expression does not have a closed-form expression for its maximum in ϕ.
Therefore, we optimize ϕ numerically given a particular combination of MT

and BT , searching exhaustively over 2,000 uniformly spaced points in the range
[0, 10]. For a fixed bracket cycle T , the MLE may be found offline for all possible
combinations of BT and MT and stored in a look-up table (LUT) of maximal
possible size 22×count(T ). But as stated above, only 15 sequences of detections
are possible for the Fibonacci bracketing sequence used in the main text when
combined with saturation look-ahead inhibition. Therefore the corresponding
LUT is also extremely small in practice.
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